Infotech: Journal of Technology Information
Vol 11, No 1 (2025): JUNI

REVOLUTIONIZING DIGITAL TRUST: NETWORK INTRUSION DETECTION SYSTEMS FOR IDENTITY AND SECURITY ASSURANCE IN THE METAVERSE

Ginting, Jusia Amanda (Unknown)
Sembiring, Irwan (Unknown)
Putra, Yonathan Rahadi (Unknown)
Marvelino, Matthew (Unknown)



Article Info

Publish Date
24 Jun 2025

Abstract

Digital security has become a major challenge in the metaverse, an interactive virtual space that integrates augmented reality and virtual reality. This study develops a machine learning-based Network Intrusion Detection System (NIDS) to enhance security reliability within the metaverse. K-Means and Apriori algorithms are applied to optimize rules in the Snort IDS, enabling more accurate detection of Distributed Denial of Service (DDoS) and Malware Command and Control (CNC) attacks. The results show that rule optimization using machine learning increases detection accuracy for DDoS attacks from 60% to 75% and for CNC attacks from 35% to 40%. Furthermore, this approach successfully reduces the false positive rate. The implementation of the optimized NIDS provides a significant contribution to securing activities in the metaverse, ensuring a safer and more reliable virtual environment.

Copyrights © 2025






Journal Info

Abbrev

infoteh

Publisher

Subject

Computer Science & IT

Description

Jurnal Infotech adalah jurnal ilmiah yang berisi hasil penelitian yang ditulis oleh dosen, peneliti dan praktisi. Jurnal ini diharapkan untuk mengembangkan penelitian dan memberikan kontribusi yang berarti untuk meningkatkan sumber daya penelitian di bidang Teknologi Informasi dan Ilmu Komputer. ...