Claim Missing Document
Check
Articles

Found 19 Documents
Search

DATA MINING UNTUK ANALISA PENGAJUAN KREDIT DENGAN MENGGUNAKAN METODE LOGISTIK REGRESI Jusia Amanda Ginting
Jurnal Algoritma, Logika dan Komputasi Vol 2, No 2 (2019): Jurnal ALU, September 2019
Publisher : Universitas Bunda Mulia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30813/j-alu.v2i2.1845

Abstract

Penerapan data mining sebagai media untuk menganalisa pengajuan kredit oleh nasabah sangat penting, dikarenakan kemampuan data mining dalam pengolahan data. Data yang digunakan dalam penelitian ini merupakan data nasabah dari sebuah industri perbankan yang diambil dari Machine Learning Repository sebanyak sepuluh ribu data dan hasil dari pengolahan data dapat digunakan sebagai salah satu acuan oleh pihak bank untuk menyetujui apakah pengajuan nasabah tersebut dapat disetujui atau tidaknya. Proses analsisa data pada rapidminer melalaui beberapa proses yaitu data retrive data limiter dat, set role, spli dataPenerapan data mining sebagai media untuk menganalisa pengajuan kredit oleh nasabah sangat penting, dikarenakan kemampuan data mining dalam pengolahan data. Data yang digunakan dalam penelitian ini merupakan data nasabah dari sebuah industri perbankan yang diambil dari Machine Learning Repository sebanyak sepuluh ribu data dan hasil dari pengolahan data dapat digunakan sebagai salah satu acuan oleh pihak bank untuk menyetujui apakah pengajuan nasabah tersebut dapat disetujui atau tidaknya. Proses analsisa data pada rapidminer melalaui beberapa proses yaitu data retrive data limiter dat, set role, spli data
Analisa Indeks Vegetasi Menggunakan Citra Satelit Lansat 7 dan Lansat 8 Menggunakan Metode K-Means di Kawasan Gunung Sinabung Jusia Amanda Ginting; Ardy Mathias Jadera
Indonesian Journal of Computing and Modeling Vol 1 No 1 (2018)
Publisher : Pusat Studi Sistem Informasi dan Pemodelan Mitigasi Tropika

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1177.731 KB)

Abstract

Komunitas tumbuhan atau vegetasi mempunyai peranan penting dalam ekosotem. Kehadiran vegetasi pada suatu kawasan akan memberikan dampak positif bagi keseimbangan ekosistem dalam skala lebih luas seperti halnya pengaturan keseimbangan karbondioksida dan oksigen dalam udara, perbaikan tanah dan pengaturan tata air dalam tanah. Sumatera utara secara geografis terletak pada 10 Lintang Utara -40 Lintang Utara dan 980 Bujur Timur -1000 Bujur Timur. Sumatera Utara mulai dari segmen Alas-Karo dan sepanjang kurang lebih 390 km merupakan sumber bencana alam geologi berupa pusat-pusat gempa didarat dan pemicu terjadinya letusan gunung berapi dan tanah longsor (Bappeda,2015), Letusan Gunung Sinabung merupakan salah satu contoh bencana alam di Sumatera Utara. Penelitian ini diajukan untuk menganalisis perubahan indeks vegetasi pada Gunung Sinabung selama kurun waktu Sembilan tahun dengan menggunakan NDVI,EVI dan menggunakan Citra Lansat Tujuh dan Delapan, serta penggunaan metode K-Means dalam pengklasteran data indeks vegetasi pada gunung sinabung. Hasil dari penelitian ini yaitu hasil analisis penggurangan indeks vegetasi pertahun dengan tinggkat rata-rata penggurangan indeks vegetasi pada Daerah sekitar Gunung Sinabung sebesar 25%.
NATURAL DISASTER EVENT MAPPING IN WEST JAVA USING K-MEANS ALGORITM sagaino Sagaino; Teady Matius Surya Mulyana; I Gusti Ngurah Suryantara; Jusia Amanda Ginting; Fransiskus Adikara
Jurnal Algoritma, Logika dan Komputasi Vol 5, No 02 (2022): Jurnal ALU, September 2022
Publisher : Universitas Bunda Mulia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30813/j-alu.v5i1.3359

Abstract

 Natural disaster is an event that cannot be avoided, therefore a mapping of occurrence of the natural disaster is needed. In additional to mapping, clustering of natural disaster events is also needed to determine which areas have low to high intensity events. In performing the clustering, a method or algorithm can be used, namely the k-means algorithm.In the research conducter, the scope of natural disasters is West Java Province with the attributes used are floods, landslides and tornadoes. And also from this research, it was conducted to find out how many optimal number of clusters that can be clustered.The method that used  in this study is the K-Means algorithm which is used to perform clustering. The Elbow method is used to determine the optimal K value from the dataset by calculate the SSE (Sum Square Error) of each predetermined cluster.From the result of its application, the K-Means algorithm can cluster datasets of Natural Disaster in West Java with predetermined attributes. Based on the calculation results from the elbow method, the value of K from the dataset is 4. And from the research conducter, the accuracy rate of each cluster is 0,04% to 0,56%.Keywords:  K-Means, Natural Disaster, Elbow Method, Cluster, Machine Learning
Analisa Faktor-Faktor yang Mempengaruhi Minat Generasi Z dalam Menggunakan Aplikasi Bank Digital di Indonesia I Gede Wisnu Satria Chandra Putra; Jusia Amanda Ginting
Ekuitas: Jurnal Pendidikan Ekonomi Vol. 10 No. 2 (2022)
Publisher : Fakultas Ekonomi Universitas Pendidikan Ganesha

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23887/ekuitas.v10i2.52470

Abstract

This research was conducted to become the basis for an effective service and application development strategy for digital banks to be able to attract Generation Z to use the services they offer. In this case, the author examines the influence of brand image factors, interface design and product features on the interest of Generation Z in using digital banking applications in Indonesia including blu, LINE Bank, Jago and SEA Bank. This research was conducted using statistical testing methods on data from questionnaires that were collected from 119 respondents. As a result, it was found that the three independent variables in this study had a significant positive effect simultaneously in influencing the interest of Generation Z in using digital banking applications. However, partially only the brand image and interface design factors have a significant positive effect, while the product feature variable does not have a significant positive effect on the interest of Generation Z to use digital bank applications due to the lack of unique features offered by digital bank applications when compared to conventional banks.
Rancang Bangun Game Stickman Dengan Metode Quadtree Rico Fernando; Jusia Amanda Ginting
Journal of Animation and Games Studies Vol 9, No 1 (2023): April 2023
Publisher : Institut Seni Indonesia Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24821/jags.v9i1.8821

Abstract

Quadtree method is a method of dividing region into 4. Quadtree method can be applied to make collision detection easier for collidable objects. Collision detection will be done in the smallest region of the quadtree division because of the limited speed in collision detection. This problem becomes a problem where to produce a game with optimal detection is done by dividing the region with quadtree method by dividing the region into 4 until the collidable objects in each region does not exceed the predetermined limits, thus reducing the parts that need to be checked without having to check as a whole. The method used in development is quadtree. This method is suitable to be applied to games that require collision detection in it. From this study it is obtained that the quadtree method by limiting the collision detection area can produce an optimal speed seen from the frame per second produced. The game built is expected to be able to optimize similar games that use collision detection in it. It is suggested to do further research with various types of other games.
Perancangan Aplikasi Penjualan Suku Cadang Mobil Berbasis Android (Studi Kasus : CV. Emhaka Autoparts Jakarta) Helen Leonora; Jusia Amanda Ginting
INTECOMS: Journal of Information Technology and Computer Science Vol 6 No 2 (2023): INTECOMS: Journal of Information Technology and Computer Science
Publisher : Institut Penelitian Matematika, Komputer, Keperawatan, Pendidikan dan Ekonomi (IPM2KPE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31539/intecoms.v6i2.6814

Abstract

Pada CV. Emhaka Autoparts Jakarta, semua proses penjualan masih dilakukan secara manual. Pelanggan yang hendak membeli barang masih diharuskan datang langsung ke CV. Emhaka Autoparts Jakarta untuk mendapatkan barang yang diinginkan. Proses penjualan ini menyebabkan pengolahan data penjualan menjadi kurang optimal, dengan demikian laporan penjualan yang diperoleh besar kemungkinan terjadinya kesalahan. Tidak adanya media pemasaran secara online juga merupakan tantangan bagi CV. Emhaka Autoparts Jakarta. Metode penelitian yang digunakan pada penelitian ini menggunakan metode waterfall. Penulis menggunakan metode waterfall karena metode ini melakukan penelitian secara berurutan dan sesuai dengan studi kasus yang digunakan. Hasil studi inipun membuktikan bahwasanya aplikasi yang telah dibuat telah diuji dengan menggunakan metode blackbox testing bahwa sistem yang dibuat sudah sesuai dan berjalan tanpa masalah. Dan melalui pengujian UAT (User Acceptance Testing) dengan melibatkan sejumlah responden, diperoleh hasil akhir sebesar 87,3%. Kesimpulan dari penelitian ini berdasarkan tanggapan responden menunjukkan bahwa pengguna setuju bahwa aplikasi Suku Cadang Mobil yang telah dibangun sesuai dengan harapan mereka
Analisa Faktor-Faktor yang Mempengaruhi Minat Generasi Z dalam Menggunakan Aplikasi Bank Digital di Indonesia I Gede Wisnu Satria Chandra Putra; Jusia Amanda Ginting
Ekuitas: Jurnal Pendidikan Ekonomi Vol. 10 No. 2 (2022)
Publisher : Fakultas Ekonomi Universitas Pendidikan Ganesha

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23887/ekuitas.v10i2.52470

Abstract

This research was conducted to become the basis for an effective service and application development strategy for digital banks to be able to attract Generation Z to use the services they offer. In this case, the author examines the influence of brand image factors, interface design and product features on the interest of Generation Z in using digital banking applications in Indonesia including blu, LINE Bank, Jago and SEA Bank. This research was conducted using statistical testing methods on data from questionnaires that were collected from 119 respondents. As a result, it was found that the three independent variables in this study had a significant positive effect simultaneously in influencing the interest of Generation Z in using digital banking applications. However, partially only the brand image and interface design factors have a significant positive effect, while the product feature variable does not have a significant positive effect on the interest of Generation Z to use digital bank applications due to the lack of unique features offered by digital bank applications when compared to conventional banks.
GAME EDUKASI MATCH PUZZLE MENGGUNAKAN ALGORITMA FISHER-YATES SHUFFLE BERBASIS ANDROID Virginia, Maria; Ginting, Jusia Amanda
Jurnal Algoritma, Logika dan Komputasi Vol 6, No 1 (2023): Jurnal ALU, Maret 2023
Publisher : Universitas Bunda Mulia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30813/j-alu.v6i1.3530

Abstract

Games are one of the entertainment facilities that are in great demand by various groups and ages. Not just games, games can also be an interesting learning intermediary so that the learning process becomes more enjoyable. The use of games as a learning intermediary can improve the quality of learning because children are not easily bored in teaching and learning activities. A game that is suitable to support the quality of children's learning is a puzzle game where puzzle games train children to focus and solve the puzzles. The algorithm used to create the puzzle game is Fisher-Yates Shuffle. The Fisher-Yates Shuffle method is an algorithm that generates random permutations of an infinite set, in other words to randomize a set. The result of this research is an android-based puzzle educational game that implements the Fisher-Yates Shuffle algorithm to randomize puzzle objects so that users cannot memorize the position of objects. 
PERANCANGAN DAN IMPLEMENTASI SECURITY DAN SISTEM KENDALI OTOMATIS SMART HOME MENGGUNAKAN NODEMCU setiady, kevin wijaya; Ginting, Jusia Amanda
Jurnal Algoritma, Logika dan Komputasi Vol 6, No 1 (2023): Jurnal ALU, Maret 2023
Publisher : Universitas Bunda Mulia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30813/j-alu.v6i1.3756

Abstract

Kondisi ekonomi yang semakin sulit pada masa pandemi COVID-19 menjadi alasan utama tingkat kriminalitas. Salah satunya adalah pencurian yang terjadi di perumahan. Kadang-kadang kelalaian pemilik rumah dalam memeriksa celah menjadi celah bagi para pelaku untuk melakukan pencurian, dengan membuat sistem keamanan dapat menjadi solusi atas masalah diatas karena penelitian ini dilakukan untuk mengatasi masalah keamanan tersebut dengan alat yang diharapkan dapat memberikan sistem dan kenyamanan terhadap pemilik rumah.             Alat keamanan berupa sensor-sensor yang dipasang pada bagian gerbang, pintu depan, dan jendela. Sensor ini akan berfungsi dengan cara mengirim notifikasi ke smartphone pemilik rumah ketika sensornya terpicu. Pengujian prototipe dilakukan guna mengetahui kesalahan dan kekurangan dari rancangan sistem sehingga memudahkan dalam perbaikan.Hasil pengujian menunjukkan bahwa mikrokontroler yang digunakan seperti esp32-cam & nodemcu mampu mengendalikan sensor pir, relay, solenoid doorlook, laser sensor, ldr sensor dan magnetic sensor dengan baik dan berjalan sesuai dengan fungsi yang ditujukan yaitu membangun sistem keamanan. Implementasi dalam memasang sensor sebagai salah satu cara untuk melakukan pencegahan terjadinya pencurian rumah bisa menjadi pertimbangan dalam melindungi rumah.Kata Kunci: 
MEMPREDIKSI PENINGKATAN H-INDEKS UNTUK JURNAL PENELITIAN DENGAN MENGGUNAKAN ALGORITMA COST-SENSITIVE SELECTIVE NAIVE BAYES CLASSIFIERS Henglie, Reycardo; Purnomo, Yunianto; Ginting, Jusia Amanda
Jurnal Algoritma, Logika dan Komputasi Vol 7, No 1 (2024): Maret 2024
Publisher : Universitas Bunda Mulia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30813/j-alu.v7i1.6028

Abstract

Machine learning community is not only interested in maximizing classification accuracy, but also in minimizing the distances between the actual and the predicted class. Some ideas, like the cost-sensitive learning approach, are proposed to face this problem. In this paper, we propose two greedy wrapper forward cost-sensitive selective naive Bayes approaches. Both approaches readjust the probability thresholds of each class to select the class with the minimum-expected cost. The first algorithm (CSSNB-Accuracy) considers adding each variable to the model and measures the performance of the resulting model on the training data. The variable that most improves the accuracy, that is, the percentage of well classified instances between the readjusted class and actual class, is permanently added to the model. In contrast, the second algorithm (CS-SNB-Cost) considers adding variables that reduce the misclassification cost, that is, the distance between the readjusted class and actual class. We have tested our algorithms on the bibliometric indices prediction area. Considering the popularity of the well-known h-index, we have researched and built several prediction models to forecast the annual increase of the h-index for Neurosciences journals in a four-year time horizon. Results show that our approaches, particularly CS-SNB-Accuracy, achieved higher accuracy values than the analyzed cost sensitive classifiers and Bayesian classifiers. Furthermore, we also noted that the CS-SNB-Cost always achieved a lower average cost than all analyzed cost-sensitive and cost-insensitive classifiers. These cost sensitive selective naive Bayes approaches outperform the selective naive Bayes in terms of accuracy and average cost, so the cost-sensitive learning approach could be also applied in different probabilistic classification approaches.