Out-of-stock or excess inventory is a major challenge in retail supply chain management, especially in dynamic urban areas. This stock imbalance not only causes financial losses, but can also reduce customer satisfaction due to products being unavailable when needed. This study developed an artificial intelligence (AI)-based decision support system using the Random Forest algorithm to predict daily demand in retail stores. The model was trained using historical sales data that included various variables such as date, product category, and previous sales trends. After the training process, the model was implemented in the form of an interactive web application using Streamlit, which allows users to easily access the system through a browser without the need for special installation. Testing results show that the model is capable of predicting demand for the next 7 days with a fairly good level of accuracy, as indicated by a Mean Absolute Error (MAE) value of ±4.613 units per day. This application not only provides demand predictions but also presents data visualizations and automatic restocking recommendations based on the prediction results. Thus, this system is expected to help store managers make more accurate, efficient, and data-driven restocking decisions. Additionally, the use of Streamlit simplifies the process of distributing the system widely and enhances accessibility for end-users, including those without a technical background. This research opens opportunities for further development through the integration of real-time data and other AI methods to improve prediction accuracy in the future.
Copyrights © 2025