The diseases that affect apple tree leaves seriously compromise agricultural production; therefore, early and accurate diagnosis is quite important for good disease control. Machine learning's recent developments have opened fascinating possibilities for automating the detection process and enhancing methods of precision agriculture. This study aims to create a strong classification model that can accurately and efficiently identify various diseases that affect apple tree leaves. The approach combines the pre-trained EfficientNetB0 architecture for feature extraction with the XGBoost model for classification, utilizing the advantages of both deep learning and gradient-boosting methods. With high performance measures including a macro-average precision of 95.86%, recall of 95.44%, and F1 score of 95.64%, the model achieved a classification accuracy of 95.74%. Furthermore, the average ROC-AUC score of 0.9964 emphasizes how well the model differentiates the five disease categories. This work stands out due to its hybrid approach, which integrates a robust pre-trained convolutional neural network (EfficientNetB0) with the XGBoost model. This significantly improves the accuracy of disease classification. This approach presents a novel pathway for precision agriculture, providing a reliable and effective instrument for the automatic identification of diseases in apple orchards.
Copyrights © 2025