UNP Journal of Statistics and Data Science
Vol. 3 No. 3 (2025): UNP Journal of Statistics and Data Science

Penerapan Partial Least Squares dan Pendekatan Robust dalam Analisis Diskriminan untuk Data Berdimensi Tinggi

Rahmadina Adityana (Unknown)
Vionanda, Dodi (Unknown)
Permana, Dony (Unknown)
Fitri, Fadhilah (Unknown)



Article Info

Publish Date
30 Aug 2025

Abstract

Classical discriminant analysis, namely linear discriminant analysis and quadratic discriminant analysis, is generally known to suffer from singularity problems when exprerienced with high-dimensional data and is not robust to outliers that make the data not multivariate normally distributed. This research focuses on investigating the classification performance of discriminant analysis on high-dimensional data by applying two approaches, namely the Partial Least Square (PLS) dimension reduction approach as a solution to high-dimensional data and a robust approach with the Minimum Covariance Determinant (MCD) estimator technique that is robust to outliers. The data used for this study is Lee Silverman Voice Treatment (LSVT) data. PLS forms five optimal latent variables that represent predictor variable information. Based on the assumption test of covariance homogeneity between groups, the test statistic value is greater than the chi-square table or the p-value is smaller than the significance level, which means that the assumption is unfulfilled, so quadratic discriminant analysis is applied. The evaluation results showed that the quadratic discriminant analysis analysis model with the MCD approach on the PLS transformed data was able to achieve 81% accuracy, 71% precision, 86% recall, and 77% F1-score. These values indicate that both approaches are able to maintain the efficiency of discriminant analysis classification performance on high-dimensional and multivariate non-normally distributed data.

Copyrights © 2025






Journal Info

Abbrev

ujsds

Publisher

Subject

Computer Science & IT Decision Sciences, Operations Research & Management Mathematics Social Sciences

Description

UNP Journal of Statistics and Data Science is an open access journal (e-journal) launched in 2022 by Department of Statistics, Faculty of Science and Mathematics, Universitas Negeri Padang. UJSDS publishes scientific articles on various aspects related to Statistics, Data Science, and its ...