MUKADIMAH: Jurnal Pendidikan, Sejarah, dan Ilmu-ilmu Sosial
Vol 9, No 2 (2025)

Instructor Performance Analysis in Educational Contexts Based on Learner Evaluation Data: Integration of Clustering and Predictive Model

Lestari, Santi Dwi Desy (Unknown)
Margono, Hendro (Unknown)



Article Info

Publish Date
01 Oct 2025

Abstract

This study aims to analyze instructor performance in educational contexts by classifying instructors based on learner evaluation data through the K-Means clustering algorithm and developing a predictive model to support effective and targeted instructor development programs. The data were derived from learners’ evaluations of instructors, covering aspects such as discipline and professionalism, mastery of subject matter, and pedagogical skills in delivering content. The results indicate that k=3 is the optimal cluster, producing three categories: Superior Instructor, Potential Instructor, and Developing Instructor. Furthermore, the predictive model demonstrates that the Naive Bayes algorithm outperforms XGBoost in performance prediction, achieving higher accuracy, recall, precision, and F1-scores. The integration of clustering and prediction proves effective in enabling faster, objective, and data-driven decisions for instructor development. These findings provide significant implications for educational institutions in establishing adaptive and sustainable systems of instructor evaluation and management.‎

Copyrights © 2025






Journal Info

Abbrev

mkd

Publisher

Subject

Humanities Education Social Sciences

Description

Jurnal ini mempublikasikan artikel dengan tema-tema yang berkaitan dengan pendidikan, sejarah, dan ilmu-ilmu sosial baik lingkup lokal dan nasional, akademik, maupun lingkup umum. Jurnal ini terbit dua kali dalam setahun, yaitu pada bulan Februari dan Agustus. ...