This study investigates the role and effectiveness of feature selection and feature reduction techniques in improving the accuracy, validity, and efficiency of predictive models for survey-based happiness indices. A Systematic Literature Review (SLR) was conducted following the PRISMA 2020 protocol, evaluating 40 peer-reviewed articles published between 2020 and 2025. The results demonstrate that feature selection methods namely wrapper, filter, and embedded approaches can significantly enhance model performance, yielding higher coefficients of determination (R²) and lower prediction errors. Furthermore, the identification of relevant features has been shown to improve construct validity and the reliability of happiness indicators. The integration of feature selection and feature reduction techniques also contributes to more efficient and stable models, particularly in high-dimensional data contexts. However, the limited number of studies directly addressing happiness and the methodological heterogeneity across works pose challenges to the generalizability of the findings. This review provides valuable insights for establishing evidence-based practices and guiding strategic developments in future happiness index analytics
Copyrights © 2025