JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika)
Vol 10, No 3 (2025)

OPTIMIZATION OF SOFTWARE DEFECT PREDICTION USING CNN AND ADABOOST: ANALYSIS AND EVALUATION

Basit, Muhammad Abdul (Unknown)
Setyanto, Arief (Unknown)
Hidayat, Tonny (Unknown)



Article Info

Publish Date
04 Aug 2025

Abstract

This study focuses on enhancing software defect prediction (SDP) by integrating Convolutional Neural Networks (CNN) with the AdaBoost algorithm. The PROMISE dataset was employed in this research, and data balancing was achieved using the SMOTE Tomek technique. With the help of AdaBoost, we were able to increase the prediction accuracy after building a complex CNN model to extract features from the da-taset. The AdaBoost model's hyperparameters were fine-tuned using GridSearch to find the best values for enhanced model performance. For the studies, we used StandardScaler to normalize the data after splitting it into training and testing groups with an 80:20 ratio. The ex-perimental results show that compared to the baseline method, SDP's accuracy is significantly improved when CNN, AdaBoost, and GridSearch hyperparameter tweaking are used together. Accuracy, pre-cision, recall, F1 score, MCC, and AUC were some of the measures used to assess the model's performance.

Copyrights © 2025






Journal Info

Abbrev

Publisher

Subject

Computer Science & IT Education

Description

JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika) e-ISSN: 2540 - 8984 was made to accommodate the results of scientific work in the form of research or papers are made in the form of journals, particularly the field of Information Technology. JIPI is a journal that is managed by the ...