Regression analysis is a method to explain the relations between independent variables and a dependent variable. Linear regression analysis relies on certain assumptions, one of the assumption is homogeneity. However, there is a situation when the variance at each observation differs or called spatial heterogeneity.This issue can be solved using Geographically Weighted Regression (GWR), a statistical method that can be fixed spatial heterogeneity by adding a local weighted matrix, the result in GWR model is a local model for each observation point. However, GWR has a limitation, it cannot handle multicollinearity. Ridge regression is a method used to solved multicollinearity by adding a bias constant (λ). A GWR model that contains multicollinearity and fixed using ridge regression is known as Geographically Weighted Ridge Regression (GWRR).
Copyrights © 2024