Claim Missing Document
Check
Articles

Found 5 Documents
Search

Pemanfaatan SIPLah Dalam Memasarkan Produk Ekonomi Kreatif Bagi Para Pengusaha Mikro, Kecil, dan Menengah di Desa Podosari Herinanto, Dwi; Gumanti, Miswan; Utami, Bernadhita Herindri Samodera
SWARNA: Jurnal Pengabdian Kepada Masyarakat Vol. 3 No. 3 (2024): SWARNA: Jurnal Pengabdian Kepada Masyarakat, Maret 2024
Publisher : LPPM Sekolah Tinggi Ilmu Ekonomi 45 Mataram

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55681/swarna.v3i3.1247

Abstract

Kementerian Pendidikan dan Kebudayaan Indonesia memperkenalkan SIPLah sebagai sistem informasi yang mengatur seluruh proses pengadaan barang dan jasa untuk sekolah-sekolah di Indonesia. SIPLah menyediakan platform online yang memungkinkan para pimpinan sekolah dan penyedia barang dan jasa berinteraksi secara efektif. Kegiatan sosialisasi pemanfaatan SIPLah yang diinisiasi tim dosen Institut Bakti Nusantara dan Universitas Lampung bertujuan untuk menambah kesadaran para peserta dalam memanfaatkan platform yang disediakan pemerintah untuk mengembangkan bisnisnya. Objek pengabdian ini adalah para wirausahawan berusia 20-40 tahun yang berdomisili di Desa Podosari, Kecamatan Pringsewu, Kabupaten Pringsewu, Lampung. Penerapan aktivitas pelatihan kepada warga dilakukan dengan kombinasi beberapa metode yaitu metode ceramah, demo, dan diskusi. Setelah mengikuti pelatihan, 88% peserta menyatakan tertarik untuk dapat memperluas jaringan pelanggan melalui SIPLah dan 12% menjawab ragu-ragu. Hasil kegiatan pengabdian sukses menarik atensi peserta untuk menggunakan teknologi dalam memasarkan produk UMKM di platform SIPLah yang dibuat Kemendikbudristek. Dampak positif kegiatan pengabdian yaitu dapat menanamkan pola pikir bagi peserta bahwa mendaftar dan tergabung dalam SIPLah dapat memberikan berbagai keuntungan bagi pelaku usaha, termasuk meningkatkan akses pasar, transparansi dalam proses pengadaan, efisiensi operasional, peluang kontrak yang lebih besar, serta dukungan dari pihak Kemendikbudristek.
Robust Panel Data Regression Analysis using the Least Trimmed Squares (LTS) Estimator on Poverty Line Data in Lampung Province Lestari, Windi; Widiarti; Utami, Bernadhita Herindri Samodera; Usman, Mustofa; Handayani, Vitri Aprilla
Integra: Journal of Integrated Mathematics and Computer Science Vol. 1 No. 2 (2024): July
Publisher : Magister Program of Mathematics, Universitas Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26554/integrajimcs.20241210

Abstract

Robust regression is an alternative method in regression analysis designed to produce stable parameter estimates, even when the data contain outliers or deviate from classical assumptions. One of its estimation techniques, the Least Trimmed Square (LTS),works by minimizing the smallest squared residuals, thereby assigning smaller weights to extreme data points. This method serves as a solution when classical approaches, such as Ordinary Least Squares (OLS), fail to meet the assumptions, especially in socio-economic data that are often complex and prone to outliers. This study employs robust regression with the LTS estimator on panel data to examine the impact of population size , population density , and registered job vacancies on poverty lines in Lampung Province. The data cover 15 districts and cities from 2019 to 2023. The analysis results show that the model obtained has a coefficient of determination of R2=0.8909. This means that the three predictor variables can explain 89.09% of the variation in the poverty line.
Georaphically Weighted Ridge Regression Modelling on 2023 Poverty Indicators Data in the Provinces of West Kalimantan and Central Kalimantan Anjani, Syarli Dita; Widiarti; Utami, Bernadhita Herindri Samodera; Usman, Mustofa; Handayani, Vitri Aprilla
Integra: Journal of Integrated Mathematics and Computer Science Vol. 1 No. 3 (2024): November
Publisher : Magister Program of Mathematics, Universitas Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26554/integrajimcs.20241320

Abstract

Regression analysis is a method to explain the relations between independent variables and a dependent variable. Linear regression analysis relies on certain assumptions, one of the assumption is homogeneity. However, there is a situation when the variance at each observation differs or called spatial heterogeneity.This issue can be solved using Geographically Weighted Regression (GWR), a statistical method that can be fixed spatial heterogeneity by adding a local weighted matrix, the result in GWR model is a local model for each observation point. However, GWR has a limitation, it cannot handle multicollinearity. Ridge regression is a method used to solved multicollinearity by adding a bias constant (λ). A GWR model that contains multicollinearity and fixed using ridge regression is known as Geographically Weighted Ridge Regression (GWRR).
The Kernel Function of Reproducing Kernel Hilbert Space and Its Application on Support Vector Machine Utami, Bernadhita Herindri Samodera; Warsono; Usman, Mustofa; Fitriani
Science and Technology Indonesia Vol. 10 No. 4 (2025): October
Publisher : Research Center of Inorganic Materials and Coordination Complexes, FMIPA Universitas Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26554/sti.2025.10.4.1096-1108

Abstract

Reproducing Kernel Hilbert Space (RKHS) is a Hilbert space consisting of functions that can be represented or reproduced by a kernel function. The development of data science has made RKHS a method that refers to an approach or technique using the concept of reproducing kernels in certain applications, especially machine learning. Support Vector Machine (SVM) is one of the machine learning methods included in the supervised learning category for classification and regression tasks. This research aims to determine the form of linear kernel functions, polynomial kernel functions, and Gaussian kernel functions in Support Vector Machine analysis and analyze their performance in Support Vector Machine classification and regression. Application of the RKHS method in SVM classification analysis using World Disaster Risk Dataset data published by Institute for International Law of Peace and Armed Conflict (IFHV) from Ruhr-University Bochum in 2022 obtained results that are based on the results by comparing the predictions of training data and testing data using linear kernel functions, polynomial kernels and Gaussian kernels, it is recommended that classification using linear kernels provides the best prediction performance.
Pelatihan LaTeX Menggunakan Overleaf untuk Meningkatkan Kemampuan Penulisan Karya Ilmiah bagi Dosen di Pringsewu Fitriani, Fitriani; Faisol, Ahmad; Nuryaman, Aang; Kurniasari, Dian; Utami, Bernadhita Herindri Samodera
Jurnal Pengabdian Kepada Masyarakat (JPKM) TABIKPUN Vol. 5 No. 3 (2024)
Publisher : Faculty of Mathematics and Natural Sciences - Universitas Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23960/jpkmt.v5i3.184

Abstract

Keunggulan LaTeX telah menjadikannya sebagai standar dalam penulisan karya ilmiah. Saat ini, sebagian dosen belum dapat menggunakan LaTeX sehingga diperlukan pelatihan penggunaan Latex bagi Dosen di Pringsewu Lampung. Kegiatan ini bertujuan untuk meningkatkan kemampuan penulisan karya ilmiah bagi para Dosen. Kegiatan ini dilaksanakan di Institut Bakti Nusantara (IBN) Pringsewu dengan metode ceramah interaktif dan praktik langsung menggunakan Overleaf. Keuntungan menggunakan overleaf adalah peserta tidak perlu mengunduh aplikasi untuk menjalankan LaTeX. Pada sesi terakhir, beberapa peserta mempresentasikan hasil kerjanya. Selanjutnya, peserta diberikan kuesioner mengenai tingkat pemahaman peserta terhadap materi yang diberikan. Kegiatan ini diikuti oleh 34 dosen di Pringsewu. Berdasarkan hasil kuisioner, sebanyak 76,47% peserta memahami materi dengan sangat baik, 20,59% memahami dengan baik dan 2,94% cukup memahami materi yang diberikan. Selain itu, sebanyak 97,06% peserta tertarik menulis artikel menggunakan LaTeX.