Ketidakstabilan harga beras premium sebagai komoditas pangan pokok memerlukan solusi prediksi yang akurat untuk membantu perencanaan ekonomi. Penelitian ini menerapkan algoritma Machine Learning, yaitu Regresi Linier, untuk memprediksi kenaikan harga beras premium. Model dilatih menggunakan data historis harga dan dievaluasi kinerjanya dengan metrik MAE (0.244), MSE (0.092), dan R-squared (0.893), menunjukkan tingkat akurasi yang cukup baik dalam memprediksi harga. Selanjutnya, model yang berhasil dikembangkan diimplementasikan ke dalam aplikasi web interaktif berbasis Streamlit. Aplikasi ini memungkinkan pengguna untuk memasukkan tanggal dan secara langsung mendapatkan prediksi harga beras premium. Hasil penelitian menunjukkan bahwa Regresi Linier efektif dalam memprediksi harga beras premium, dan implementasi ke dalam aplikasi Streamlit berhasil menyediakan alat prediksi yang mudah diakses. Meskipun demikian, penelitian lanjutan dapat berfokus pada peningkatan akurasi model dan eksplorasi algoritma Machine Learning lainnya untuk prediksi harga komoditas
Copyrights © 2025