Bulletin of Electrical Engineering and Informatics
Vol 14, No 5: October 2025

Online PID-neural network for tracking lower limb rehabilitation exoskeleton angular position

Hanifah, Ummi (Unknown)
Adinda, Aura (Unknown)
Rahmatillah, Akif (Unknown)
Sapuan, Imam (Unknown)
Ain, Khusnul (Unknown)
Septanto, Harry (Unknown)
Chai, Rifai (Unknown)



Article Info

Publish Date
01 Oct 2025

Abstract

Gait trajectory tracking control is an essential component of a lower limb rehabilitation exoskeleton (LLRE). Meanwhile, the proportional-integral-derivative (PID) controller remains popular for a variety of applications, including LLRE. Nonetheless, employing PID presents a significant issue, namely determining how to choose or tune the parameters. This paper addresses the LLRE’s hipknee angular position tracking system based on an online PID-NN controller, i.e., a PID controller, whose parameters are online modified by a trained neural network (NN). A proposed framework for designing the PID-NN controller is elaborated. Numerical verifications are carried out by comparing the performance of the PID-based control system, whose parameters have been tuned using Ziegler-Nichols (ZN), without and using NN. Performance comparisons involving the presence of external disturbance are also carried out. The simulation results show that the proposed PID-NN-based control system provides better performance with lower mean squared error (MSE), root mean squared error (RMSE), and mean absolute error (MAE) values.

Copyrights © 2025






Journal Info

Abbrev

EEI

Publisher

Subject

Electrical & Electronics Engineering

Description

Bulletin of Electrical Engineering and Informatics (Buletin Teknik Elektro dan Informatika) ISSN: 2089-3191, e-ISSN: 2302-9285 is open to submission from scholars and experts in the wide areas of electrical, electronics, instrumentation, control, telecommunication and computer engineering from the ...