JOURNAL OF APPLIED INFORMATICS AND COMPUTING
Vol. 9 No. 5 (2025): October 2025

Evaluating Fasttext and Glove Embeddings for Sentiment Analysis of AI-Generated Ghibli-Style Images

Sentana Putra, I Gusti Ngurah (Unknown)
Yusran, Muhammad (Unknown)
Sari, Jefita Resti (Unknown)
Suhaeni, Cici (Unknown)
Sartono, Bagus (Unknown)
Dito, Gerry Alfa (Unknown)



Article Info

Publish Date
14 Oct 2025

Abstract

The development of text-to-image generation technology based on artificial intelligence has triggered mixed public reactions, especially when applied to iconic visual styles such as Studio Ghibli. This research aims to evaluate public sentiment towards the phenomenon of Ghibli-style AI images by comparing two static word embedding methods, namely FastText and GloVe, on three classification algorithms: Logistic Regression, Random Forest, and Convolutional Neural Network (CNN). Data in the form of Indonesian tweets were collected from Twitter using hashtags such as #ghibli, #ghiblistyle, and #hayaomiyazaki during the period 25 March to 25 April 2025. Each tweet was manually labelled with positive or negative sentiment, then preprocessed and represented using pre-trained FastText and GloVe embeddings. Evaluation was conducted using accuracy, precision, recall, and F1-score metrics, both macro and weighted. Results showed that FastText consistently performed the best on most models, especially in terms of precision and overall accuracy, thanks to its ability to handle sub-word information and spelling variations in social media texts. The combination of CNN with FastText yielded the highest performance with a macro F1-score of 76.56% and accuracy of 84.69%. However, GloVe still showed competitive performance in recall on the Logistic Regression model, making it relevant for contexts that prioritise sentiment detection coverage. This study emphasizes the importance of selecting embeddings and models that are appropriate to the characteristics of the data and the purpose of the analysis in informal social media-based sentiment classification.

Copyrights © 2025






Journal Info

Abbrev

JAIC

Publisher

Subject

Computer Science & IT

Description

Journal of Applied Informatics and Computing (JAIC) Volume 2, Nomor 1, Juli 2018. Berisi tulisan yang diangkat dari hasil penelitian di bidang Teknologi Informatika dan Komputer Terapan dengan e-ISSN: 2548-9828. Terdapat 3 artikel yang telah ditelaah secara substansial oleh tim editorial dan ...