The grouping of library materials in the Department of Informatics and Computer Engineering (JTIK) at Universitas Negeri Makassar (UNM) is still conducted using a conventional system that relies on predefined categories and librarian intuition. This approach often leads to inconsistencies in book categorization, making it difficult for users to find relevant references efficiently. To address this issue, this research applies the K-Means++ clustering method, which optimizes centroid initialization for more accurate cluster formation. Books are grouped based on the TF-IDF weighting matrix, resulting in six distinct clusters characterized by unique centroid values. Analysis of the top 10 words per cluster highlights dominant topics within each group. The clustering quality was evaluated using the Silhouette Coefficient, with the highest value of 0.04299, indicating a well-separated cluster structure. These findings demonstrate that K-Means++ effectively organizes books based on word similarity, enhancing library material management and improving information retrieval in the JTIK library.
                        
                        
                        
                        
                            
                                Copyrights © 2025