Jatilima : Jurnal Multimedia Dan Teknologi Informasi
Vol. 7 No. 03 (2025): Jatilima : Jurnal Multimedia Dan Teknologi Informasi

Random Forest Regression Algorithm in Predicting Coconut Plantation Yields

Nadia, Cut Mirna (Unknown)
M. Fakhriza (Unknown)



Article Info

Publish Date
20 Oct 2025

Abstract

Oil palm is one of Indonesia’s leading commodities with a significant contribution to the national economy. Production fluctuations caused by environmental and technical factors require an accurate predictive model. This study aims to predict Fresh Fruit Bunch (FFB) production using the Random Forest Regression algorithm based on data from PT Perkebunan Nusantara IV Regional 1, Bandar Selamat Unit (2022–2024). The research employed historical data including land area, number of trees, plant density, bunch count, and planting year. The model underwent preprocessing, training, testing, and evaluation using Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and coefficient of determination (R²). Results show that Random Forest Regression achieved excellent accuracy with R² = 0.9846, MAE = 31,889.58 kg, and RMSE = 55,164.62 kg. The most influential factors were planting year, number of trees, and land area. In conclusion, Random Forest Regression is highly effective for predicting oil palm production and captures complex non-linear relationships among variables.

Copyrights © 2025






Journal Info

Abbrev

jatilima

Publisher

Subject

Computer Science & IT

Description

JATILIMA merupakan jurnal yang terbit dua nomor dalam satu volume (tahun), yaitu Peridoe I Bulan April dan Periode II Bulan Oktober. JATILIMA mempublikasikan tulisan-tulisan ilmiah hasil pemikiran, studi literatur, dan penelitian dalam bidang Ilmu Komputer. JATILIMA merupakan jurnal dengan sistem ...