Steganography is a technique for embedding secret information into digital media, such as medical images, without significantly affecting their visual quality. The primary challenge in medical image steganography is preserving the quality of the cover image while ensuring robustness against distortions such as compression or data manipulation attacks, which may impact diagnostic accuracy. This study proposes an enhanced steganographic method based on Discrete Wavelet Transform (DWT) and Singular Value Decomposition (SVD) to improve the security and robustness of medical image embedding. DWT decomposes the medical image into four frequency sub-bands (LL, LH, HL, HH), while SVD is applied to embed the secret image while maintaining essential medical features. Experimental results show that the proposed method achieves a PSNR value of up to 78 dB and an SSIM value approaching 1, indicating that the stego image quality is nearly identical to the original cover image. Compared to previous DCT-SVD and IWT-SVD-based approaches, the DWT-SVD method offers superior robustness and imperceptibility, particularly in preserving image quality in complex-textured medical images. This method contributes to enhancing data security in telemedicine and AI-based medical imaging applications by ensuring that sensitive medical data remains protected while preserving image integrity for diagnostic use.
Copyrights © 2025