Jurnal Informatika dan Teknik Elektro Terapan
Vol. 12 No. 2 (2024)

PERBANDINGAN ANALISIS SENTIMEN SETELAH PILPRES 2024 DI TWITTER MENGGUNAKAN ALGORITMA MACHINE LEARNING

Syahrohim, Imam (Unknown)
Saputra, Septian Dwi (Unknown)
Saputra, Rizal Wahyu (Unknown)
Pranatawijaya, Viktor Handrianus (Unknown)
Priskila, Ressa (Unknown)



Article Info

Publish Date
02 Apr 2024

Abstract

Penelitian ini bertujuan untuk menganalisis sentimen opini masyarakat di media sosial Twitter setelah Pemilihan Presiden 2024 menggunakan beberapa algoritma machine learning yaitu Naive Bayes, Support Vector Machine, dan Logistic Regression. Data yang digunakan bersumber dari Twitter dengan total 4.260 data yang terdiri dari 3 dataset calon presiden (Ganjar Pranowo, Anies Baswedan, dan Prabowo Subianto). Dilakukan proses crawling data, pembersihan data, pelabelan data menggunakan Vader, dan pelatihan data dengan TF-IDF sebelum dilakukan klasifikasi sentimen. Hasil eksperimen menunjukkan bahwa algoritma Logistic Regression memiliki performa terbaik pada dataset Ganjar Pranowo dengan akurasi 84,39%, presisi 84,92%, recall 84,39%, dan f-measure 81,52%. Penelitian ini memberikan insight tentang perbandingan performa algoritma klasifikasi dalam kasus analisis sentimen pada media sosial yang dapat digunakan sebagai referensi untuk penelitian serupa di masa mendatang.

Copyrights © 2024






Journal Info

Abbrev

jitet

Publisher

Subject

Computer Science & IT

Description

Jurnal Informatika dan Teknik Elektro Terapan (JITET) merupakan jurnal nasional yang dikelola oleh Jurusan Teknik Elektro Fakultas Teknik (FT), Universitas Lampung (Unila), sejak tahun 2013. JITET memuat artikel hasil-hasil penelitian di bidang Informatika dan Teknik Elektro. JITET berkomitmen untuk ...