Jurnal Informatika dan Teknik Elektro Terapan
Vol. 12 No. 3S1 (2024)

KLASIFIKASI TINGKAT TUTUR BAHASA SASAK BERBASIS TEKS MENGGUNAKAN NAIVE BAYES

arrozi, lalu muhamad alawi (Unknown)
rahman, aviv yuniar (Unknown)
putra, rangga pahlevi (Unknown)



Article Info

Publish Date
12 Oct 2024

Abstract

Abstrak. Tujuan dari penelitian ini adalah untuk menilai efektivitas klasifikasi tingkat tutur bahasa Sasak berbasis teks menggunakan algoritma Naive Bayes dalam mengidentifikasi dan mengkategorikan tingkat tutur bahasa Sasak. Penurunan kesadaran kaum muda mengenai penggunaan "tatakrama" atau tingkat tutur dalam percakapan sehari-hari di Lombok menunjukkan perlunya melestarikan aspek budaya yang penting ini. Tingkat tutur, yang melibatkan sistem kode untuk menyampaikan kesopanan, mencakup kosakata dan aturan leksikal tertentu. Metode yang digunakan dalam penelitian ini adalah Naive Bayes, yang memanfaatkan probabilitas dan statistik untuk klasifikasi teks. Ada dua tahap utama dalam studi ini: pelatihan dan pengujian, dengan pembagian data 70:30. Temuan menunjukkan bahwa model Naive Bayes mencapai F1-score sebesar 84,99%, akurasi 85,08%, presisi 85,12%, dan recall 85,08%. Hasil ini menunjukkan bahwa Naive Bayes adalah metode yang efektif untuk mengklasifikasikan tingkat tutur bahasa Sasak, meskipun hasilnya tidak setinggi beberapa studi sebelumnya. Penelitian ini memberikan kontribusi terhadap pengembangan metode yang lebih efisien dan akurat untuk klasifikasi teks tingkat tutur bahasa Sasak dan menunjukkan perlunya perbaikan dalam pemilihan fitur serta perluasan dataset untuk studi-studi mendatang.

Copyrights © 2024






Journal Info

Abbrev

jitet

Publisher

Subject

Computer Science & IT

Description

Jurnal Informatika dan Teknik Elektro Terapan (JITET) merupakan jurnal nasional yang dikelola oleh Jurusan Teknik Elektro Fakultas Teknik (FT), Universitas Lampung (Unila), sejak tahun 2013. JITET memuat artikel hasil-hasil penelitian di bidang Informatika dan Teknik Elektro. JITET berkomitmen untuk ...