Algoritma supervised learning digunakan untuk memprediksi dan mengklasifikasikan atribut tertentu, namun masalah utama adalah distribusi data yang tidak merata antar kelas yang dapat menyebabkan overfitting. Untuk mengatasi ini, diperlukan augmentasi kelas minoritas menggunakan teknik Synthetic Minority Oversampling Technique (SMOTE). Tujuan penelitian ini memberikan solusi praktis untuk mengatasi ketidakseimbangan data dengan SMOTE pada kasus siswa yang tidak lulus semua mata pelajaran, guna mengurangi risiko overfitting. Metode penelitian ini adalah penelitian eksperimental dengan pendekatan kuantitatif menggunakan data sekunder dari kelulusan mata pelajaran siswa. Teknik analisis data hasil SMOTE diuji dengan algoritma C5.0, dan variasi state 1 hingga 100 digunakan untuk memastikan pemilihan data training dan testing secara acak di setiap iterasi. Hasil penelitian menunjukkan bahwa uji data asli dengan algoritma C5.0 menghasilkan plot akurasi, recall, dan spesifisitas yang tidak konsisten, sedangkan uji data yang diolah dengan SMOTE menunjukkan plot yang stabil mendekati 100%. Artinya, data SMOTE memberikan performa yang lebih baik pada algoritma C5.0 dibandingkan data asli. Efektivitas teknik SMOTE dan algoritma C5.0 dapat berkontribusi bagi peneliti yang menghadapi masalah serupa. Implikasi hasil penelitian ini juga dapat dijadikan acuan dalam membuat aplikasi untuk mendeteksi kelulusan siswa guna mempermudah guru dalam mengambil keputusan.
Copyrights © 2024