Claim Missing Document
Check
Articles

Found 2 Documents
Search

Algoritma Synthetic Minority Oversampling Technique dan C5.0 dalam Mengatasi Ketidakseimbangan Data pada Klasifikasi Kelulusan Siswa Aprihartha, Moch Anjas; Putrawan, Zulhandi; Zulhan, Dicky; Nurfaizal, Fatma Ahardika
Upgrade : Jurnal Pendidikan Teknologi Informasi Vol 2 No 1 (2024): Vol. 2 No. 1 Agustus 2024
Publisher : Pendidikan Teknologi Informasi Universitas Bumigora

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30812/upgrade.v2i1.4148

Abstract

Algoritma supervised learning digunakan untuk memprediksi dan mengklasifikasikan atribut tertentu, namun masalah utama adalah distribusi data yang tidak merata antar kelas yang dapat menyebabkan overfitting. Untuk mengatasi ini, diperlukan augmentasi kelas minoritas menggunakan teknik Synthetic Minority Oversampling Technique (SMOTE). Tujuan penelitian ini memberikan solusi praktis untuk mengatasi ketidakseimbangan data dengan SMOTE pada kasus siswa yang tidak lulus semua mata pelajaran, guna mengurangi risiko overfitting. Metode penelitian ini adalah penelitian eksperimental dengan pendekatan kuantitatif menggunakan data sekunder dari kelulusan mata pelajaran siswa. Teknik analisis data hasil SMOTE diuji dengan algoritma C5.0, dan variasi state 1 hingga 100 digunakan untuk memastikan pemilihan data training dan testing secara acak di setiap iterasi. Hasil penelitian menunjukkan bahwa uji data asli dengan algoritma C5.0 menghasilkan plot akurasi, recall, dan spesifisitas yang tidak konsisten, sedangkan uji data yang diolah dengan SMOTE menunjukkan plot yang stabil mendekati 100%. Artinya, data SMOTE memberikan performa yang lebih baik pada algoritma C5.0 dibandingkan data asli. Efektivitas teknik SMOTE dan algoritma C5.0 dapat berkontribusi bagi peneliti yang menghadapi masalah serupa. Implikasi hasil penelitian ini juga dapat dijadikan acuan dalam membuat aplikasi untuk mendeteksi kelulusan siswa guna mempermudah guru dalam mengambil keputusan.
Klasifikasi Produktivitas Buah Nanas Menggunakan Algoritma Classification and Regression Tree (CART) Aprihartha, Moch. Anjas; Putrawan, Zulhandi; Zulhan , Dicky; Ahardika Nurfaizal, Fatma
Diophantine Journal of Mathematics and Its Applications Vol. 3 No. 1 (2024)
Publisher : UNIB Press

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33369/diophantine.v3i1.34193

Abstract

Indonesia is one of the countries that has a variety of fruits cultivated. One of them is the pineapple fruit. Various pineapple-based products such as pineapple juice, canned foods, pineapple jam, etc. The high demand for pineapples presents an opportunity for companies to increase pineapple product processing. The increase in pineapple productivity is influenced by several factors, one of which is the extent of land and the type of pineapple produced. To improve pineapple productivity, it can be done by classifying the types of pineapples based on productive and non-productive categories. The purpose of this classification is to enable farmers or plantation managers to allocate resources more efficiently by providing more intensive care for productive category pineapples. The classification method that can be used to classify productive and non-productive pineapples is the Classification and Regression Tree (CART) algorithm. The CART method is a method that produces decision tree models that are used to solve classification and regression problems. This research uses the CART method to classify pineapple productivity. The research results obtained accuracies, sensitivities, specificities, and precisions of 97.06%; 92.31%; 100%; 100% respectively. Meanwhile, the AUC obtained is 0.962 which indicates that the model is very good at predicting pineapple productivity correctly.