TEKNIK INFORMATIKA
Vol. 18 No. 1: JURNAL TEKNIK INFORMATIKA

Impact of Hyperparameter Tuning on CNN-Based Algorithm for MRI Brain Tumor Classification

Gea, Muhammad Nasri (Unknown)
Wanayumini, Wanayumini (Unknown)
Rosnelly, Rika (Unknown)



Article Info

Publish Date
30 Apr 2025

Abstract

This study examines the impact of hyperparameter tuning on the performance of Convolutional Neural Networks (CNN) in classifying brain tumors using MRI images. The dataset, sourced from Kaggle, underwent preprocessing techniques such as normalization, augmentation, and resizing to enhance consistency and diversity. The study evaluates five hyperparameter configurations, analyzing their effects on classification accuracy, precision, recall, and F1-score. The optimal configuration (batch size: 16, epochs: 10, learning rate: 0.001) achieved an accuracy of 86%, precision of 81%, recall of 85%, and an F1-score of 0.83. Other configurations showed trade-offs, where larger batch sizes increased recall but reduced precision. These findings emphasize the importance of careful hyperparameter tuning to optimize medical imaging classification performance.

Copyrights © 2025






Journal Info

Abbrev

ti

Publisher

Subject

Computer Science & IT

Description

Jurnal Teknik Informatika merupakan wadah bagi insan peneliti, dosen, praktisi, mahasiswa dan masyarakat ilmiah lainnya untuk mempublikasikan artikel hasil penelitian, rekayasa dan kajian di bidang Teknologi Informasi. Jurnal Teknik Informatika diterbitkan 2 (dua) kali dalam ...