JOIV : International Journal on Informatics Visualization
Vol 9, No 3 (2025)

Assessment of Post-Disaster Building Damage Levels Using Back-Propagation Neural Network Prediction Techniques

Wibowo Almais, Agung Teguh (Unknown)
Fajrin, Rahma Annisa (Unknown)
Naba, Agus (Unknown)
Sarosa, Moechammad (Unknown)
Juhari, Juhari (Unknown)
Susilo, Adi (Unknown)



Article Info

Publish Date
31 May 2025

Abstract

Indonesia is susceptible to natural disasters, with its geographical location being one of the contributing factors. To mitigate the harmful effects of natural catastrophes, a disaster emergency response must be undertaken, consisting of steps taken immediately following the event. These operations include rescuing and evacuating victims and property, addressing basic needs, providing protection, and restoring buildings and infrastructure. Accurate data is required for adequate recovery after a disaster. The Badan Penanggulangan Bencana Daerah (BPBD) oversaw disaster relief efforts, but faulty damage assessments slowed restoration. Surveyor subjectivity and differing criteria result in discrepancies between reported damage and reality, generating issues during the post-disaster reconstruction. The objective of this study is to develop a prediction system to measure the extent of damage caused by natural disasters to buildings. The five criteria that decide the level of building damage after a disaster are building conditions, building structure condition, physical condition of severely damaged buildings, building function, and other supporting conditions. The data used are from the BPBD of Malang city from 2019 to 2023. This system would allow surveyors to make speedy and objective evaluations. Five different models were tested using the Neural Network Backpropagation approach. Model A2 produces the highest accuracy of 93.81%. A2 uses a 40-38-36-34 hidden layer pattern, 1000 epochs, and a learning rate 0.1. These findings can lay the groundwork for advanced prediction models in post-disaster building damage evaluation research.

Copyrights © 2025






Journal Info

Abbrev

joiv

Publisher

Subject

Computer Science & IT

Description

JOIV : International Journal on Informatics Visualization is an international peer-reviewed journal dedicated to interchange for the results of high quality research in all aspect of Computer Science, Computer Engineering, Information Technology and Visualization. The journal publishes state-of-art ...