CESS (Journal of Computer Engineering, System and Science)
Vol. 9 No. 1 (2024): January 2024

Membandingkan Analisa Kesalahan Metode K-Means Clustering dan Canopy K-Means Clustering Dengan Data Gambar Terfilter

Hayati, Ariadi Retno (Unknown)
Imama, Wilda (Unknown)
Kirana, Puspa (Unknown)
Zuraida, Vit (Unknown)



Article Info

Publish Date
10 Jan 2024

Abstract

Pada penelitian ini menganalisa kesalahan yang diperoleh pada data pembelajaran pada data gambar dengan membandingkan metode K-Means Clustering dan metode Canopy K-Means Clustering. Data yang digunakan adalah data gambar yang diujikan pada aplikasi yang dibangun dan menelaah nilai kesalahan pada setiap iterasi. Analisa kesalahan dengan memahami karakteristik formula pada metode K-Means Clustering dan Canopy K-Means Clustering dan menganalisa angka kesalahan berdasarkan formula kedua metode dengan demikian maka karakteristik perolehan error pada metode Canopy K-Means Clustering diperoleh berdasarkan karakteristik formula dari metode tersebut. Dari hasil beberapa uji coba dengan dataset yang data berbeda maka diperoleh rata-rata bahwa metode Canopy K-Means Clustering memiliki nilai kesalahan lebih sedikit sejumlah 0,0264% dibandingkan metode K-Means Clustering dengan Euclidean distance dan rata-rata keberhasilan 85% sesuai kelompok.

Copyrights © 2024






Journal Info

Abbrev

cess

Publisher

Subject

Computer Science & IT

Description

CESS (Journal of Computer Engineering, System and Science) contains articles on research results and conceptual studies in the fields of informatics engineering, computer science and information systems. The main topics published include: 1. Information security 2. Computer security 3. Networking & ...