Brain tumor classification using MRI images presents a critical challenge in medical radiology. This study develops a deep learning model based on Convolutional Neural Network (CNN) to classify brain MRI images into four categories: Normal, Glioma, Meningioma, and Pituitary. A publicly available dataset from Kaggle consisting of 20,672 images was used, with preprocessing and data augmentation applied. The model architecture includes convolutional, pooling, flatten, dense, and dropout layers, optimized using the Adam optimizer and categorical crossentropy loss function. The evaluation results show that the model achieved an overall accuracy of 96% with high f1-scores across all classes, particularly for the Pituitary class (0.98). The main contribution of this study lies in the integration of diverse data augmentation techniques and Explainable AI (XAI) methods, enabling the visualization of key areas in MRI images that support classification decisions. The proposed model is not only accurate but also demonstrates strong generalization and interpretability, making it a promising tool for clinical decision support systems in brain tumor diagnosis.
Copyrights © 2025