SEMINAR TEKNOLOGI MAJALENGKA (STIMA)
Vol 8 (2024): STIMA 8.0 : Menuju Kesinambungan : Inovasi dan Adaptasi Teknologi untuk Pembangunan Be

IMPLEMENTASI DAN EVALUASI SISTEM REKOMENDASI MUSIK BERBASIS LIRIK DENGAN ALGORITMA TERM FREQUENCY-INVERSE DOCUMENT FREQUENCY

Ramadhan, Muhammad Azis (Unknown)
Najiyah, Ina (Unknown)
Abillutfi, Ramadhan Muhammad (Unknown)
Musaropah, Resa (Unknown)
Pramanik, Niskala Dian (Unknown)



Article Info

Publish Date
01 Oct 2024

Abstract

This research focuses on the development and evaluation of a content-based music recommendation system that utilizes lyric analysis. The system's core feature is the use of the Term Frequency-Inverse Document Frequency (TF-IDF) algorithm to transform song lyrics into comparable numerical representations. This representation enables the calculation of semantic similarity between songs, which is then used to generate personalized music recommendations based on user preferences. The research utilizes a dataset from Kaggle consisting of thousands of song entries. System evaluation is conducted to measure lyric similarity, recommendation accuracy, user satisfaction, and recommendation relevance. This research contributes to the development of content-based music recommendation systems and provides insights into the use of song lyrics for generating more personalized and relevant music recommendations

Copyrights © 2024






Journal Info

Abbrev

stima

Publisher

Subject

Computer Science & IT Control & Systems Engineering Industrial & Manufacturing Engineering Mechanical Engineering Transportation

Description

Prosiding SEMINAR TEKNOLOGI MAJALENGKA (STIMA) adalah publikasi ilmiah yang memuat hasil-hasil penelitian orisinal dan terkini dari para akademisi, peneliti, dan praktisi di berbagai bidang teknik dan manajemen. Prosiding ini memiliki sifat multidisiplin, berfokus pada integrasi ilmu pengetahuan ...