Reinforced Concrete bridges are widely used in highway infrastructure due to their cost-effectiveness and structural redundancy. However, they are highly vulnerable to seismic hazards, particularly in near-fault regions where ground motions exhibit extreme intensity and short-duration energy pulses. Near-fault ground motions are characterized by high-energy velocity pulses with long periods, pulse-like waveforms, and significant peak values, which can lead to severe structural damage. As modern design practices shift toward performance-based design, the vulnerability of bridges under these different types of near-fault ground motions have become an emerging area of interest for researchers and designers. However, a common practice is to assume fixed-base conditions for bridge piers during vulnerability assessments, which may lead to inaccurate results. The effect of assuming fixed-base conditions on the vulnerability assessment of bridge piers remains an open question. This study presents a comprehensive comparative analysis of seismic damage propagation in a simply supported multi-span RC bridge subjected to near-fault pulse-like ground motions with directivity effects. The bridge is modeled under two distinct foundation conditions: fixed-base and flexible-base, with the latter incorporating soil-structure interaction through a pile group foundation. The analytical framework employs Incremental Dynamic Analysis to develop seismic fragility curves, offering a thorough evaluation of the system-level performance. The results reveal that SSI significantly alters the structural response, with median normalized changes of approximately 27% in drift and 30% in base shear. In some cases, the normalized drift demand increased by up to 76.8%, whereas the normalized base shear decreased by up to 51.1%, indicating substantial shifts in deformation and force distribution. These variations significantly affect the energy dissipation capacity of the bridge, which is essential for mitigating damage progression and enhancing seismic resilience.
Copyrights © 2026