Jurnal Algoritma
Vol 22 No 2 (2025): Jurnal Algoritma

Klasifikasi Penyakit Monkeypox dengan XGBoost dan SMOTE untuk Penanganan Data Tidak Seimbang

Illawati, Adinda Rahma (Unknown)
Hadiana, Asep Id (Unknown)
Melina, Melina (Unknown)



Article Info

Publish Date
01 Nov 2025

Abstract

Monkeypox is an infectious disease that spreads rapidly and requires an accurate early detection system. This study aims to develop a monkeypox disease classification model by overcoming data imbalance problems. The method used is Extreme Gradient Boosting (XGBoost) combined with Synthetic Minority Over-sampling Technique (SMOTE). Model evaluation using Confusion Matrix with 69% accuracy, precision of 0.69, recall of 0.93, and F1-score of 0.79. In addition, the Area Under Curve - Receiver Operating Characteristic (AUC-ROC) value reached 0.68. This study shows that the combination of SMOTE and XGBoost can overcome data imbalance and improve minority class detection, thus contributing to the development of a more accurate and efficient infectious disease early detection system.

Copyrights © 2025






Journal Info

Abbrev

algoritma

Publisher

Subject

Computer Science & IT

Description

Jurnal Algoritma merupakan jurnal yang digunakan untuk mempublikasikan hasil penelitian dalam bidang Teknologi Informasi (TI), Sistem Informasi (SI), dan Rekayasa Perangkat Lunak (RPL), Multimedia (MM), dan Ilmu Komputer (Computer ...