Julia Jurnal
Vol 2 No 01 (2022): Julia Jurnal

OPTIMIZATION OF PARTICLE SWARM OPTIMIZATION IN NAÏVE BAYES FOR CAESAREAN BIRTH PREDICTION

Dhika Malita Puspita Arum (Unknown)
Andri Triyono (Unknown)
Eko Supriyadi (Unknown)
Rahmawan Bagus Trianto (Unknown)



Article Info

Publish Date
20 Jan 2022

Abstract

The Maternal Mortality Rate (MMR) in 2017 according to the World Health Organization (WHO) is estimated to reach 296,000 women who die during and after pregnancy or childbirth. Caesarean birth is the last alternative in labor if the mother cannot give birth normally due to certain indications with a high risk, both for the mother and the baby. factors of a mother giving birth by caesarean section, such as placenta previa, hypertension, breech baby, fetal distress, narrow hips, and can also experience bleeding in the mother before the delivery stage. It is hoped that delivery by caesarean method can minimize problems for the baby and mother. Accurate prediction of the condition of the mother's pregnancy can enable d octors, health care providers and mothers to make more informed decisions regarding the management of childbirth. To predict caesarean births, data mining techniques using the Naive Bayes algorithm can be used. Naive Bayes is very simple and efficient but very sensitive to features, therefore the selection of appropriate features is very necessary because irrelevant features can reduce the level of accuracy. Naive Bayes will work more effectively when combined with several attribute selection procedures such as Particle Swarm Optimization. In this study, the researcher proposes a Particle Swarm Optimization algorithm for attribute weighting in Naive Bayes so as to increase the accuracy of Caesarean birth prediction results 

Copyrights © 2022






Journal Info

Abbrev

1

Publisher

Subject

Computer Science & IT

Description

Julia is an open access journal. Readers may read, download, copy, distribute, print, search, or link to the full text of this article free of charge. All submitted papers will be peer reviewed before being accepted for publication. Authors who wish to submit manuscripts to Julia must follow the ...