Claim Missing Document
Check
Articles

Found 7 Documents
Search

Kombinasi Metode K-Nearest Neighbor dengan Cosine Similarity untuk Prediksi Serangan Firewall pada Jaringan Komputer Trianto, Rahmawan Bagus; Triyono, Andri; Arum, Dhika Malita Puspita
Jurnal Informatika Universitas Pamulang Vol 6, No 4 (2021): JURNAL INFORMATIKA UNIVERSITAS PAMULANG
Publisher : Teknik Informatika Universitas Pamulang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32493/informatika.v6i4.12680

Abstract

The security of the computer network, especially the internet, is very crucial to note. One of the most effective ways to secure a computer network is to use a firewall. However, making a firewall that is still manual will make it difficult for network administrators to secure their computer network. The automatic detection of attacks on the firewall will further enhance the security of the computer network. Prediction or detection of attacks on the firewall automatically and intelligently can use the K-Nearest Neighbor algorithm by measuring the distance of data similarity using Cosine Similarity. The results of this study managed to achieve a high accuracy, which is 99.71%, precision is 74.70% and recall is 74.85% of predicting traffic that goes to the firewall. The results can be used as a standard of accuracy in predicting the traffic leading to the firewall, or even create an additional firewall so that the security of computer networks, especially the user data is saved.
Penerapan Least Squares Support Vector Machines (LSSVM) dalam Peramalan Indonesia Composite Index Andri Triyono; Rahmawan Bagus Trianto; Dhika Malita Puspita Arum
Jurnal Informatika Universitas Pamulang Vol 6, No 1 (2021): JURNAL INFORMATIKA UNIVERSITAS PAMULANG
Publisher : Teknik Informatika Universitas Pamulang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32493/informatika.v6i1.10237

Abstract

In the era of very rapidly advancing technology like today, both internet technology and computerization have made various corporate agencies or investors start thinking about the importance of the stock market in their capital division. Previously there were various purchases by the company's capital, such: gold, land, buildings, production machines, but at this time the purchase of capital shares should also start to attract attention and these purchases are legal investments. Various kinds of company shares that are sold can already be seen through the internet and it is very easy and attractive for companies that will make capital purchases, even the model can be chosen for both long-term and short-term capital purchases. This stock price forecasting system using the Least Squares Support Vector Machines (LSSVM) method will be very popular with investors to help determine conclusions for buying shares because it can reduce losses or even make the right decisions so that it will increase profits for investors or companies. Least Squares Support Vector Machines is a simpler model and has been modified from the previous model, namely: Support Vector Machines (SVM) method. Solving linear equations can be solved in a simpler way using LSSVM compared to using SVM. The variable used in the network is the close price variable. The kernel that used for this study is the RBF kernel. This study consists of three phases or stages. The first stage uses 400 historical data rows, second stage uses 800 historical data rows, and the third stage uses 1200 rows of data. This research obtains the best result of accuracy in the third stage. The third stage has the smallest MSE value: 0.00025248 by using 1200 rows of historical data.
Klasifikasi Rating Otomatis pada Dokumen Teks Ulasan Produk Elektronik Menggunakan Metode N-gram dan Naïve Bayes Rahmawan Bagus Trianto; Andri Triyono; Dhika Malita Puspita Arum
Jurnal Informatika Universitas Pamulang Vol 5, No 3 (2020): JURNAL INFORMATIKA UNIVERSITAS PAMULANG
Publisher : Teknik Informatika Universitas Pamulang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32493/informatika.v5i3.6110

Abstract

Online product ratings usually provide descriptive reviews and also reviews in the form of ratings. Likewise, what was done at the Lazada online store. Descriptive review can provide a clear view compared to a rating review to other potential buyers. However, in reality there is a mismatch between the description review and the rating given. This creates a lack of information for sellers as well as potential buyers. Automatic classification of buyer descriptive reviews is proposed in this study so that there is a match between descriptive reviews and rating reviews. This automatic classification descriptive review uses the Naive Bayes algorithm with n-gram feature extraction and TF-IDF word weighting. The results of this study obtained the best accuracy of 94.06%, a recall of 91.73% and precision of 90.71% in Bigram feature extraction. With this accuracy value it can be used as a reference or model for classifying product description reviews, so that the feedback process between sellers and buyers can run well.
Klasterisasi Menggunakan Algoritma K-Means dan Elbow pada Opini Masyarakat Tentang Kebijakan Sekolah Luring Tahun 2022 Rahmawan Bagus Trianto; Agus Susilo Nugroho; Eko Supriyadi
Jurnal Inovtek Polbeng Seri Informatika Vol 8, No 1 (2023)
Publisher : P3M Politeknik Negeri Bengkalis

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35314/isi.v8i1.2756

Abstract

The covid-19 pandemic that swept across the globe had adverse effects in many areas. One of the most affected areas is education in Indonesia. The online learning model became the only option at the time, which had a negative impact on the quality of education in Indonesia. As time went on, conditions are getting better, but there was still a threat of covid-19. In early 2022 governments began to adopt face-to-face or offline learning that attracted opinions on social media. The opinions that are widely written on social media need to be prepared because they could be input to the government. Clustering using the k-meansalgorithm with the elbow method as its optimizer in determining the best cluster number is one of the opinions processing options on social media for measuring and accounting. Data is treated with two approaches: with and without stemming. Applying the elbow method to the k-means algorithm produces a performance of the clustering model with a DBI value of 0.003 with 4 clusters, and a value of SSE 0.331, for data without stemming. On data with treatment using stemming, it has 3 cluster numbers with a value of DBI at 0.003 and SSE at 0426.
Peringkasan Dokumen Teks Bilingual Sebagai Reduksi Fitur Untuk Klasifikasi Menggunakan Algoritma K-NN Rahmawan Bagus Trianto; Agus Susilo Nugroho
LogicLink Vol. 1 No. 1, June 2024
Publisher : UIN K.H. Abdurrahman Wahid Pekalongan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28918/logiclink.v1i1.7801

Abstract

Summarizing text is a step to extract the essence of a text document with no more than half. Summarizing text has an important role in extracting the core information from a document in a more concise form. Summarizing text documents can be used as feature reduction in classifying text documents because it can reduce features that are considered irrelevant. Text documents are summarized using the Term Frequency-Inverse Document Frequency (TF-IDF) method, then classified using the K-Nearest Neighbor (K-NN) algorithm. One of the disadvantages of the K-NN algorithm is that it is not optimal in classification if the k value is not appropriate, as well as the selection of an inappropriate distance calculation method. By testing various k values ​​and using the Euclidean Distance distance measurement method, you can increase the accuracy of text document classification. Text document summarization using the proposed TF-IDF method is proven to increase when classification is carried out with K-NN. From the research results, it was found that the classification accuracy at the compression rate increased by 50% with a k value of 6 to 8 of 95.33%. This shows that text document summarization as feature reduction has a positive role in the classification process using the K-NN algorithm.
Perbandingan Efisiensi Memori dan Waktu Komputasi Pada 7 Algoritma Sorting Menggunakan Bahasa Pemrograman Java Pujiono, Imam Prayogo; Trianto, Rahmawan Bagus; Hana, Fida Maisa
Jurnal Sistem Informasi dan Sistem Komputer Vol 9 No 2 (2024): Vol 9 No 2 - 2024
Publisher : STIMIK Bina Bangsa Kendari

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.51717/simkom.v9i2.481

Abstract

Perkembangan teknologi informasi telah merubah metode penyimpanan data dari fisik menjadi digital, yang menuntut pengorganisasian data yang baik untuk mempermudah pencarian dan verifikasi. Oleh karena itu, pengurutan data menjadi sangat penting dan berbagai algoritma pengurutan telah dikembangkan, seperti Quick Sort dan Heap Sort. Penelitian ini bertujuan membandingkan kinerja waktu komputasi dan penggunaan memori dari tujuh algoritma sorting: Bubble Sort, Insertion Sort, Selection Sort, Shell Sort, Quick Sort, Merge Sort, dan Heap Sort menggunakan bahasa pemrograman Java. Evaluasi dilakukan pada dataset berisi 100, 1.000, dan 10.000 data numerik acak antara 1-99. Hasil penelitian menunjukkan Shell Sort memberikan waktu komputasi tercepat untuk dataset berisi 100 dan 1.000 data, sementara Heap Sort paling efisien untuk dataset berisi 10.000 data. Dari segi penggunaan memori, ketujuh algoritma menunjukkan konsumsi memori serupa, namun Shell Sort membutuhkan memori lebih rendah pada dataset berisi 1.000 data, dan Merge Sort menggunakan memori lebih banyak pada dataset berisi 10.000 data.
Sistem Informasi Peminjaman Alat Praktikum Laboratorium Multimedia Berbasis Website dengan Framework Laravel Muhammad, Kukuh; Trianto, Rahmawan Bagus; Prasetyanti, Dwi Novia
Joined Journal (Journal of Informatics Education) Vol 7 No 2 (2024): Volume 7 Nomor 2 (2024)
Publisher : Universitas Ivet

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31331/joined.v7i2.3560

Abstract

Sistem Informasi Peminjaman Alat Praktikum merupakan aplikasi berbasis web yang dirancang untuk mengelola proses peminjaman alat praktikum bagi mahasiswa atau pengguna di laboratorium multimedia. Laboratorium Multimedia memiliki tanggung jawab menyediakan fasilitas peminjaman alat praktikum untuk mendukung kegiatan belajar mengajar. Diperlukan sistem untuk mempermudah dan mengefisienkan proses peminjaman alat, dengan memanfaatkan teknologi komputer. Oleh karena itu, penelitian ini bertujuan untuk menerapkan Sistem Informasi Peminjaman Alat Praktikum Berbasis Web dengan bahasa pemrograman web pada Laboratorium Multimedia menggunakan framework Laravel. Dalam pengembangan sistem ini, metode Waterfall digunakan sebagai pendekatan pembangunan. Untuk menguji kelayakan sistem, dilakukan evaluasi menggunakan metode System Usability Scale (SUS). Hasil pengujian dengan menyebarkan 30 kuisioner dengan metode SUS menggunakan skala linkert menunjukkan nilai kelayakan sebesar 85,5%, yang menempatkannya dalam kategori Excellent menurut standar usability, menunjukkan bahwa sistem ini berhasil memenuhi kriteria kemudahan penggunaan dan kepuasan pengguna.