JITK (Jurnal Ilmu Pengetahuan dan Komputer)
Vol. 11 No. 2 (2025): JITK Issue November 2025

SENTIMENT ANALYSIS OF IT WORKERS ON NO CODE AND LOW CODE TRENDS: COMPARISON OF LSTM AND SVM MODELS

Agustin, Yoga Handoko (Unknown)
Nabil Nur Afrizal (Unknown)



Article Info

Publish Date
27 Nov 2025

Abstract

This research explores the sentiment of IT professionals toward the growing trend of No Code and Low Code technologies by comparing the performance of Support Vector Machine (SVM) and Long Short-Term Memory (LSTM) algorithms. Using the SEMMA methodology and automatic labeling with ChatGPT, a total of 4,238 comments were collected from Reddit and Twitter and categorized into positive, neutral, and negative sentiments. The analysis showed that neutral sentiment dominates on both platforms (47.9% on Reddit and 48.8% on Twitter), followed by positive sentiment (41.3% and 43.1%, respectively), indicating cautious but optimistic attitudes toward LCDPs. In terms of model performance, SVM outperformed LSTM with 87% accuracy and a weighted F1-score of 0.87, compared to LSTM’s 80% accuracy and a weighted F1-score of 0.80. These findings confirm that classical machine learning methods remain highly effective for short-text sentiment analysis in social media, particularly when combined with TF-IDF feature representation, SMOTE balancing, and LLM-based automatic labeling, while also offering new insights into IT community perceptions of disruptive technologies

Copyrights © 2025






Journal Info

Abbrev

jitk

Publisher

Subject

Computer Science & IT

Description

Kegiatan menonton film merupakan salah satu cara sederhana untuk menghibur diri dari rasa gundah gulana ataupun melepas rasa lelah setelah melakukan aktivitas sehari-hari. Akan tetapi, karena berbagai alasan terkadang seseorang tidak ada waktu untuk menonton film di bioskop. Dengan bantuan media ...