JOURNAL OF APPLIED INFORMATICS AND COMPUTING
Vol. 9 No. 6 (2025): December 2025

Improving YOLO Performance with Advanced Data Augmentation for Soccer Object Detection

Puspita, Rahayuning Febriyanti (Unknown)
Naufal, Muhammad (Unknown)
Al Zami, Farrikh (Unknown)



Article Info

Publish Date
08 Dec 2025

Abstract

This study developed an object detection system for soccer games using the YOLOv8m algorithm with four main classes: player, goalkeeper, referee, and ball. The dataset, consisting of 372 annotated images, exhibited class imbalance, with significantly fewer ball instances compared to players. The basic YOLOv8m architecture was used without internal modifications, but adjustments were made to the output layer and fine-tuning of the pre-trained weights to adapt to the new dataset. Two models were compared: one without and one with advanced augmentation techniques (mosaic, mixup, cutmix). The experimental results showed an increase in mAP@50 from 74.9% to 81.4% in the augmented model, with a statistically significant difference (p < 0.01). However, model performance still decreased under extreme conditions such as high occlusion, rapid movement, and uneven lighting. The combination of data augmentation, output layer adaptation, and fine-tuning proved effective in improving object detection accuracy and provided the basis for the development of a real-time artificial intelligence-based soccer match analysis system.

Copyrights © 2025






Journal Info

Abbrev

JAIC

Publisher

Subject

Computer Science & IT

Description

Journal of Applied Informatics and Computing (JAIC) Volume 2, Nomor 1, Juli 2018. Berisi tulisan yang diangkat dari hasil penelitian di bidang Teknologi Informatika dan Komputer Terapan dengan e-ISSN: 2548-9828. Terdapat 3 artikel yang telah ditelaah secara substansial oleh tim editorial dan ...