Puspita, Rahayuning Febriyanti
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Improving YOLO Performance with Advanced Data Augmentation for Soccer Object Detection Puspita, Rahayuning Febriyanti; Naufal, Muhammad; Al Zami, Farrikh
Journal of Applied Informatics and Computing Vol. 9 No. 6 (2025): December 2025
Publisher : Politeknik Negeri Batam

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30871/jaic.v9i6.11256

Abstract

This study developed an object detection system for soccer games using the YOLOv8m algorithm with four main classes: player, goalkeeper, referee, and ball. The dataset, consisting of 372 annotated images, exhibited class imbalance, with significantly fewer ball instances compared to players. The basic YOLOv8m architecture was used without internal modifications, but adjustments were made to the output layer and fine-tuning of the pre-trained weights to adapt to the new dataset. Two models were compared: one without and one with advanced augmentation techniques (mosaic, mixup, cutmix). The experimental results showed an increase in mAP@50 from 74.9% to 81.4% in the augmented model, with a statistically significant difference (p < 0.01). However, model performance still decreased under extreme conditions such as high occlusion, rapid movement, and uneven lighting. The combination of data augmentation, output layer adaptation, and fine-tuning proved effective in improving object detection accuracy and provided the basis for the development of a real-time artificial intelligence-based soccer match analysis system.