International Journal of Applied Sciences and Smart Technologies
Volume 07, Issue 2, December 2025

Braille Pattern Detection Modeling Using Inception V3 Architecture Using Median Filter Implementation and Segmentation

Latif, Abdul (Unknown)
Yuliyanti, Siti (Unknown)
Al-Husaini, Muhammad (Unknown)



Article Info

Publish Date
01 Dec 2025

Abstract

This study aims to detect Braille letter patterns using the InceptionV3 architecture combined with the application of median filter and image segmentation. The dataset consists of 4,160 Braille images, with an average of 160 images for each letter from A to Z. The data is divided into 3,900 images for training, which are then split into 3,120 images for training and 780 images for validation, and 260 images are used for testing. Each image is resized to 299x299 pixels before being fed into the model. This study uses 100 epochs and applies early stopping to avoid overfitting. Two learning rate values are tested, namely 0.001 and 0.0001. The results show that the application of a median filter and segmentation significantly improves model performance, producing better accuracy, precision, recall, and F1 values compared to models without these techniques. At a learning rate of 0.001, the model achieves 99.65% accuracy, 99.62% precision, and 99.61% recall. On the other hand, without a median filter and segmentation at a learning rate of 0.0001, although accuracy and precision decreased, the values still reached 99.65% and 99.62%.

Copyrights © 2025






Journal Info

Abbrev

IJASST

Publisher

Subject

Computer Science & IT Energy Engineering Industrial & Manufacturing Engineering

Description

International Journal of Applied Sciences and Smart Technologies (IJASST) is published by Faculty of Science and Technology, Sanata Dharma University Yogyakarta-Central Java-Indonesia. IJASST is an open-access peer reviewed journal that mediates the dissemination of academicians, researchers, and ...