Al-Husaini, Muhammad
Unknown Affiliation

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search

Rancang Bangun Sistem Informasi Deteksi Dini Stunting dengan Metode Artificial Neural Network Lukmana, Hen Hen; Al-Husaini, Muhammad; Puspareni, Luh Desi; Hoeronis, Irani
JUSTIN (Jurnal Sistem dan Teknologi Informasi) Vol 12, No 3 (2024)
Publisher : Jurusan Informatika Universitas Tanjungpura

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26418/justin.v12i3.80119

Abstract

Stunting pada anak merupakan masalah kesehatan malnutrisi kronis yang menjadi perhatian serius di Indonesia. Stunting dapat terjadi pada anak yang mengalami kekurangan gizi kronis, terutama pada usia 0-23 bulan. Faktor-faktor yang menyebabkan stunting pada anak sangat kompleks dan melibatkan berbagai faktor seperti gizi, kesehatan, sosial ekonomi, lingkungan, genetik dan peilaku. Penelitian ini bertujuan untuk merancang dan mengembangkan sistem informasi deteksi dini stunting menggunakan teknologi artificial neural network yang dilengkapi dengan stacking classifiers dengan dikombinasikan ensemble machine learning gradient boosting, random forest dan output estimator regresi logistik, selain itu pengembangan sistem ini dilakukan dengan menggunakan metode pengembangan waterfall. Sistem ini diharapkan dapat memprediksi risiko stunting secara akurat berdasarkan data pertumbuhan anak, serta memberikan rekomendasi intervensi yang tepat. Penggunaan neural network memungkinkan analisis data yang kompleks dan pembaruan model secara berkala dengan hasil rataan akurasi prediksi kombinasi beberapa algoritma menggunakan model stacking classifiers dan cross validation tersebut menghasilkan akurasi yang stabil di 86,22% berdasarkan dataset 10 ribu label target prediksi. Hasil dari penelitian berdasarkan model pengembangan dan pelatihan model ini mencakup analisis kebutuhan sistem, perancangan dan desain sistem dengan UML, implementasi sistem dengan fitur pengecekan stunting, artikel edukasi, konsultasi, login dan registrasi, dan hasil pengujian dengan System Usability Scale (SUS) dengan nilai rata-rata 81 yang termasuk pada grade A dan blackbox testing dengan hasil sesuai harapan.
Perancangan Sistem Monitoring Cerdas Berbasis Internet of Things (IoT) dengan Algoritma Random Forest Regression untuk Deteksi Ketinggian pada Tanaman Tomat Cherry: Design of an Intelligent Monitoring System Based on Internet of Things (IoT) with Random Forest Regression Algorithm for Height Detection in Cherry Tomato Plants Putra, Vito Hafizh Cahaya; Al-Husaini, Muhammad; Wahyu, Ari Purno; Raharja, Agung Rachmat
MALCOM: Indonesian Journal of Machine Learning and Computer Science Vol. 5 No. 1 (2025): MALCOM January 2025
Publisher : Institut Riset dan Publikasi Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.57152/malcom.v5i1.1612

Abstract

Tomat cherry merupakan komoditas bernilai di Indonesia dengan permintaan yang meningkat setiap tahunnya. Penelitian ini mengembangkan sistem pemantauan cerdas berbasis Internet of Things (IoT) untuk tanaman tomat cherry menggunakan algoritma Random Forest Regression (RFR). Sistem ini memanfaatkan mikrokontroler ESP32 dan lima sensor untuk memantau parameter lingkungan, serta aktuator untuk pengaturan kondisi optimal. Data sensor diproses dan disimpan di platform Thingspeak dan diintegrasikan dengan Google Colab untuk prediksi ketinggian tanaman. Hasil prediksi ditampilkan di layar LCD dan dikirimkan sebagai notifikasi melalui aplikasi Telegram. Penelitian ini mengisi kesenjangan dari studi sebelumnya dengan mengintegrasikan berbagai sensor, aktuator, dan platform cloud dalam satu sistem yang komprehensif. Evaluasi sistem menunjukkan nilai Mean Squared Error (MSE) sebesar 0.8294 dan R^2 Score sebesar 0.8939, serta hasil pengujian Black Box Testing memastikan fungsionalitas optimal dalam berbagai skenario. Hasil penelitian ini dapat memberikan manfaat dalam penerapan teknologi IoT dan machine learning untuk monitoring dan pengelolaan tanaman tomat cherry, harapannya meningkatkan efisiensi dan produktivitas pertanian.   
Comparison of Support Vector Machine, Random Forest and XGBoost for Sentiment Analysis on Indodax Naufalino, Moch. Alfarros Difa; Al-husaini, Muhammad; Rianto, Rianto
Journal of Computer Networks, Architecture and High Performance Computing Vol. 7 No. 2 (2025): Research Article, Volume 7 Issue 2 April, 2025
Publisher : Information Technology and Science (ITScience)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47709/cnahpc.v7i2.5894

Abstract

The rapid growth of digital assets like Bitcoin and cryptocurrencies has increased the need for secure trading platforms such as Indodax. With the growing number of users, reviews on platforms like Google Play Store provide valuable insights into user experience and satisfaction. This research applies Machine Learning methods to classify user review sentiments by comparing three main algorithms Support Vector Machine (SVM), Random Forest, and Extreme Gradient Boosting (XGBoost). One of the main challenge in sentiment analysis is the presence of irrelevant or redundant features, which can reduce model accuracy and increase computational costs. The Feature Selection Chi-Square technique is used to filter the most influential features, enhancing model efficiency without losing critical information. Experimental results show that SVM delivers the best performance compared to Random Forest and XGBoost. Before applying Chi-Square, SVM achieved 91% accuracy, which increased to 94% after applying the feature selection technique. The number of features used was reduced from 52,312 to 2,000 without significant information loss. This combination of SVM and Feature Selection Chi-Square proves to be an efficient and accurate solution for analyzing user sentiment on crypto trading platforms like Indodax. This method is expected to improve the responsiveness of trading applications to user needs and serve as a foundation for further research in Machine Learning-based sentiment analysis.