Pertumbuhan layanan over-the-top (OTT) seperti Netflix di Indonesia menyebabkan meningkatnya jumlah ulasan pengguna yang dapat dimanfaatkan sebagai sumber informasi untuk memahami persepsi terhadap kualitas layanan. Ulasan tersebut mengandung opini positif maupun negatif yang berhubungan dengan pengalaman menonton, stabilitas aplikasi, kualitas jaringan, hingga aspek biaya. Penelitian ini bertujuan membandingkan performa dua algoritma Machine Learning, yaitu Logistic Regression dan Support Vector Machine (SVM), dengan representasi teks TF-IDF dalam mengklasifikasikan sentimen ulasan pengguna Netflix berbahasa Indonesia. Dataset yang digunakan terdiri dari 5.620 ulasan yang diperoleh dari Google Play Store dan telah melalui serangkaian tahapan prapemrosesan mencakup pembersihan teks, case folding, tokenisasi, stopword removal, dan stemming. Evaluasi dilakukan menggunakan keseluruhan dataset untuk memperoleh gambaran performa operasional yang lebih realistis dalam konteks penggunaan nyata. Hasil penelitian menunjukkan bahwa SVM memberikan performa tertinggi dengan akurasi 0,8603, F1-score 0,7773, precision 0,8698, recall 0,7026, dan ROC-AUC 0,9206, sedangkan Logistic Regression mencatat akurasi 0,8532 dan F1-score 0,7626. Selain evaluasi model, penelitian ini juga mengimplementasikan sistem analisis sentimen melalui dashboard Streamlit dan bot Telegram yang mampu memberikan prediksi secara real-time. Temuan ini menunjukkan bahwa integrasi model Machine Learning dengan platform aplikasi dapat digunakan sebagai alat pemantauan opini pengguna secara berkelanjutan serta mendukung pengambilan keputusan terkait peningkatan kualitas layanan OTT.
Copyrights © 2026