Hypertension remains one of the most prevalent chronic conditions worldwide and continues to be a major contributor to cardiovascular morbidity and mortality. Early identification of individuals at high risk is essential, yet conventional screening approaches often rely on periodic clinical examinations that may overlook subtle lifestyle or behavioral indicators. This study aims to address this challenge by developing a predictive model that estimates hypertension risk using a GRU-based neural network enhanced with the Adam optimization algorithm. The motivation for using this approach stems from the ability of GRU networks to capture nonlinear feature interactions and the effectiveness of Adam in improving training stability and convergence. The proposed system incorporates a structured preprocessing pipeline, feature scaling, and a sequential model architecture to classify individuals into hypertension and non-hypertension groups. The results show that the model achieves strong predictive performance, supported by accuracy trends, loss reduction patterns, and confusion matrix analysis that collectively demonstrate consistent learning behavior. The evaluation indicates that the GRU classifier successfully recognizes relevant health attributes such as stress levels, salt intake, age, sleep duration, and heart rate. Future research may explore expanded datasets, additional health indicators, or hybrid architectures to further enhance accuracy and improve clinical applicability. Overall, this work contributes an interpretable and efficient approach for health risk prediction and supports the development of intelligent digital health monitoring systems.
Copyrights © 2023