Jurnal Nasional Komputasi dan Teknologi Informasi
Vol 8, No 5 (2025): Oktober 2025

Analisis Sentimen Ulasan Aplikasi Vision+ pada Google Play Store Menggunakan Algoritma Naive Bayes Classifier

Eko Pangestu Aji (Universitas Bina Sarana Informatika)
Yusnia Budiarti (Universitas Bina Sarana Informatika)



Article Info

Publish Date
22 Oct 2025

Abstract

Abstrak - Perkembangan teknologi digital telah mendorong meningkatnya penggunaan aplikasi streaming, salah satunya adalah Vision+. Pengguna secara aktif memberikan ulasan di Google Play Store yang dapat digunakan sebagai bahan evaluasi untuk mengetahui tingkat kepuasan maupun keluhan terhadap layanan aplikasi tersebut. Penelitian ini bertujuan untuk melakukan analisis sentimen terhadap ulasan pengguna aplikasi Vision+ dengan mengklasifikasikannya ke dalam kategori positif, netral, dan negatif. Metode yang digunakan adalah Text Mining dengan tahapan preprocessing berupa case folding, tokenisasi, stopword removal, dan stemming. Fitur diekstraksi menggunakan metode Term Frequency-Inverse Document Frequency (TF-IDF), lalu dilakukan proses klasifikasi menggunakan algoritma Naïve Bayes Classifier dengan varian Multinomial. Data yang digunakan sebanyak 4.026 ulasan yang dibagi menjadi 80% data latih dan 20% data uji. Hasil evaluasi model menunjukkan akurasi sebesar 77%, precision sebesar 80%, recall sebesar 91%, dan f1-score sebesar 85%. Berdasarkan hasil tersebut, model dapat digunakan untuk mendeteksi sentimen secara otomatis guna mendukung pengambilan keputusan pengembangan layanan aplikasi.Kata kunci : Analisis Sentimen; Vision+; TF-IDF; Naïve Bayes Classifier; Ulasan Pengguna; Abstract - The advancement of digital technology has led to a surge in the use of streaming applications, one of which is Vision+. Users actively provide reviews on Google Playstore, which can be utilized to evaluate user satisfaction and identify complaints. This research aims to conduct sentiment analysis on user reviews of the Vision+ application by classifying them into positive, neutral, and negative categories. The method used is Text Mining with preprocessing stages such as case folding, tokenization, stopword removal, and stemming. Feature extraction is performed using Term Frequency-Inverse Document Frequency (TF-IDF), followed by classification using the Naïve Bayes Classifier algorithm with the Multinomial variant. A total of 4,026 reviews were used and split into 80% training data and 20% testing data. The model evaluation results show an accuracy of 77%, precision of 80%, recall of 91%, and an f1-score of 85%. Based on these results, the model can be used to automatically detect sentiment to support application service improvement decisions.Keywords: Sentiment Analysis; Vision+; TF-IDF; Naïve Bayes Classifier; User Reviews;

Copyrights © 2025






Journal Info

Abbrev

jnkti

Publisher

Subject

Aerospace Engineering Automotive Engineering Computer Science & IT Control & Systems Engineering Decision Sciences, Operations Research & Management Electrical & Electronics Engineering Engineering Neuroscience Transportation

Description

Jurnal Nasional Komputasi dan Teknologi Informasi adalah jurnal nasional yang diterbitkan oleh Program Studi Teknik Komputer Universitas Serambi Mekkah tahun 2018 dan telah Terakreditasi SINTA 5. Jurnal ini terbit sebanyak enam edisi dalam satu tahun yaitu setiap bulan Februari, April, Juni, ...