Jurnal Nasional Komputasi dan Teknologi Informasi
Vol 8, No 6 (2025): Desember 2025

Pengembangan Sistem Prediksi Bitcoin Mengunakan Algoritma ARIMA Dan SARIMA dengan API Coingecko

Ihsan, Muhammad Ifan Rifani (Unknown)
Aborneo, Newsem (Unknown)
Nugroho, Ferry (Unknown)
Aziz, Faqih Abdul (Unknown)
Danuarta, Daniel (Unknown)



Article Info

Publish Date
16 Dec 2025

Abstract

Abstrak – Penelitian ini mengembangkan sistem prediksi harga Bitcoin menggunakan metode ARIMA dan SARIMA dengan data real-time dari API CoinGecko. Data di kumpulkan dalam 4 interval waktu (15 menit, 30 menit, 1 jam, 1hari) dan dibagi menjadi 80% data training serta 20% data testing. Uji stasioneritas Augmented Dickey-Fuller (ADF) awal menunjukan data tidak stasioner (p-value=0,5725), namun menjadi stasioner setelah di proses differencing (p-value=0,0000). Hasil evaluasi model menunjukan bahwa SARIMA secara signifikan lebih unggul di bandingkan ARIMA. Model SARIMA menghasilkan MAPE 0.76%, MAE 843,27, RMSE1.095,43, dan korelasi 0,92. Sementara itu, ARIMA hanya menghasilkan MAPE 2.81%, MAE 3.091,65, RMSE 3.750,52, dan korelasi -0,28. Keunggulan SARIMA di sebebkan kemampuan menangkap pola musiman dalam data. Sistem ini berhasil diimplementasikan menggunakan framework Streamlit dengan fitur auto-refresh 30 detik dan visualisasi candlestick chart interaktif. Sistem prediksi real-time ini dapat menjadi alat pendukung keputusan investasi yang akurat bagi investor cryptocurrency.Kata kunci : Prediksi  Bitcoin; ARIMA;SARIMA; Stremalit; API CoinGecko; Abstract - This research develops a Bitcoin price prediction system using ARIMA and SARIMA methods with real-time data from the CoinGecko API. Data was collected in 4 time intervals (15 minutes, 30 minutes, 1 hour, 1 day) and split into 80% training data and 20% testing data. The initial Augmented Dickey-Fuller (ADF) stationarity test showed the data was non-stasionary (p-value=0.5725), but became stasionary after the differencing processs (p-value=0.0000). Evaluation results show that SARIMA performed significantly better than ARIMA. The SARIMA model yielded a MAPE of 0.76%, MAE of 843.27, RMSE of 1.095,43, and a correlation of 0,92. In contrast, the ARIMA model only achived a MAPE of 2,81%, MAE of 3.091,56, RMSE 3.750,52, and a correlation of -0,28. SARIMA’s superiority is attributed to its ability to capture seasonal patterns in the data. The system was successfully implemented using the streamlit framework, featuring 30-second auto-refresh and interactive candlestick chart visualization. This real-time prediction system can serve as an accurate decision support tool for cryptocurrency investors.Keywords: Prediction Bitcoin; ARIMAt; SARIMA; Streamlit; API CoinGecko.

Copyrights © 2025






Journal Info

Abbrev

jnkti

Publisher

Subject

Aerospace Engineering Automotive Engineering Computer Science & IT Control & Systems Engineering Decision Sciences, Operations Research & Management Electrical & Electronics Engineering Engineering Neuroscience Transportation

Description

Jurnal Nasional Komputasi dan Teknologi Informasi adalah jurnal nasional yang diterbitkan oleh Program Studi Teknik Komputer Universitas Serambi Mekkah tahun 2018 dan telah Terakreditasi SINTA 5. Jurnal ini terbit sebanyak enam edisi dalam satu tahun yaitu setiap bulan Februari, April, Juni, ...