JASIEK (Jurnal Aplikasi Sains, Informasi, Elektronika dan Komputer)
Vol. 7 No. 2 (2025): Desember 2025

Pengenalan Kualitas Tempe Berbasis YOLOv8 untuk Deteksi Dini Kegagalan Fermentasi

Isa Mahfudi (Politeknik Negeri Malang, Jl. Soekarno Hatta No.9, Jatimulyo, Kec. Lowokwaru, Kota Malang, Indonesia)
Mila Kusumawardania (Politeknik Negeri Malang, Jl. Soekarno Hatta No.9, Jatimulyo, Kec. Lowokwaru, Kota Malang, Indonesia)
Moechammad Moechammad Sarosa (Politeknik Negeri Malang, Jl. Soekarno Hatta No.9, Jatimulyo, Kec. Lowokwaru, Kota Malang, Indonesia)
Chandrasena Setiadi (Politeknik Negeri Malang, Jl. Soekarno Hatta No.9, Jatimulyo, Kec. Lowokwaru, Kota Malang, Indonesia)
Galih Putra Riatma (Politeknik Negeri Malang, Jl. Soekarno Hatta No.9, Jatimulyo, Kec. Lowokwaru, Kota Malang, Indonesia)
Farida Arinie Soelistianto (Politeknik Negeri Malang, Jl. Soekarno Hatta No.9, Jatimulyo, Kec. Lowokwaru, Kota Malang, Indonesia)
Nabila Izzatul Muslimah (Politeknik Negeri Malang, Jl. Soekarno Hatta No.9, Jatimulyo, Kec. Lowokwaru, Kota Malang, Indonesia)
Nadia Yumni Izati (Politeknik Negeri Malang, Jl. Soekarno Hatta No.9, Jatimulyo, Kec. Lowokwaru, Kota Malang, Indonesia)



Article Info

Publish Date
23 Dec 2025

Abstract

Tempe is a traditional Indonesian food whose fermentation process is highly influenced by temperature, humidity, and soybean quality. Inadequate environmental conditions can lead to fermentation failure, reducing product quality and causing economic losses. Traditionally, quality assessment of tempe has been carried out manually by artisans, which is subjective and inconsistent. This study aims to develop an automatic tempe quality recognition system based on YOLOv8, implemented on a Raspberry Pi 4B with a Logitech C270 camera, monitoring webserver, and buzzer as an early warning system. The YOLOv8 model was trained to detect two main categories, namely good tempe and failed tempe, through real-time visual analysis. Experimental results show system performance with an average accuracy of 93.1%, precision of 93.5%, recall of 91.2%, and mAP@50 of 94.7%. Confidence score analysis indicates that the model is more certain in detecting failed tempe (0.94–0.95) compared to good tempe (0.80–0.86), due to clearer visual differences.

Copyrights © 2025






Journal Info

Abbrev

jasiek

Publisher

Subject

Computer Science & IT Control & Systems Engineering Decision Sciences, Operations Research & Management Electrical & Electronics Engineering Mathematics

Description

Sistem Tenaga Generator, Distribusi Daya, Konversi Daya Listrik, Sistem Perlindungan dan Teknologi Bahan elektrik Sinyal, Sistem, dan Elektronik Pemrosesan Sinyal Digital, Pemrosesan Gambar, Sistem Robot, Sistem Kontrol dan Sistem Embeded Sistem komunikasi Telekomunikasi, Komunikasi Nirkabel dan ...