Bomba: Jurnal Pembangunan Daerah
Vol 5 No 1 (2025)

Artificial Intelligence Untuk Identifikasi Motif Tenun Tradisional Sulawesi Tengah

Pusadan, Mohammad Yazdi (Unknown)
Laila, Rahma (Unknown)
Pratama, Septiano Anggun (Unknown)



Article Info

Publish Date
30 Dec 2025

Abstract

Traditional weaving from Central Sulawesi, such as the motifs of Magau, Banua Oge/Souraja, and Tadulako, reflects deep cultural and historical values. However, the complexity of the patterns and motifs often makes manual identification challenging. This research employs an Artificial Intelligence (AI) approach using Convolutional Neural Networks (CNN) to automate the identification of these motifs. The AI model is trained using a diverse dataset of woven motif images and shows significant accuracy in classifying Magau, Banua Oge/Souraja, and Tadulako motifs. This research opens up cultural preservation and innovation opportunities in woven products with modern technology. The achieved result is the evaluation of the AI model using the following metrics: accuracy, precision, recall, and the confusion matrix. The accuracy obtained for each motif reaches 90%.

Copyrights © 2025






Journal Info

Abbrev

bomba

Publisher

Subject

Agriculture, Biological Sciences & Forestry Civil Engineering, Building, Construction & Architecture Economics, Econometrics & Finance Education Environmental Science Health Professions Industrial & Manufacturing Engineering Law, Crime, Criminology & Criminal Justice Public Health Social Sciences Transportation Veterinary Other

Description

Cakupan topik dalam jurnal ini terbagi ke dalam dua rumpun utama, yaitu rumpun pengetahuan sosial dan rumpun pengetahuan alam. Rumpun Pengetahuan Sosial meliputi kajian dalam bidang politik dan pemerintahan, hukum, kesehatan masyarakat, pendidikan, sosial budaya, kesejahteraan, serta perekonomian ...