Background: Lignin valorization into high-value chemicals is crucial for sustainable development. This study focused on optimizing the catalytic conversion of benzyl phenyl ether (BPE), a lignin model compound, to vanillin and phenolic compounds. Methods: Hierarchical H-ZSM-5 was synthesized via a dual-template method and subsequently modified by wet impregnation with bimetallic cobalt and molybdenum oxides (CoMoO4/H-ZSM-5). Catalyst properties were thoroughly characterized using various techniques, including XRD, FTIR, XRF, N2-physisorption, and SEM-EDS mapping. Reaction conditions, specifically Co:Mo ratio, temperature, and reaction time, were optimized using the Box-Behnken design (BBD), and product yields were quantified by High-Performance Liquid Chromatography (HPLC). Findings: Characterization confirmed successful catalyst synthesis, organic template removal, and bimetal oxide incorporation without significant structural damage. Catalytic tests demonstrated 100% BPE conversion. The highest experimental vanillin yield achieved was 54.69%. BBD analysis revealed that the interaction between Co:Mo ratio and temperature, as well as the quadratic effect of Co:Mo ratio, were the most influential factors impacting product yields. The optimal parameters for maximizing vanillin and phenolic yield were determined to be a Co:Mo ratio of 3:7, a temperature of 169 °C, and a reaction time of 31 minutes. While the phenolic model showed a reasonable fit (R² = 0.76), the vanillin model exhibited a lower fit (R² = 0.34) with significant lack-of-fit. Conclusion: This research provides crucial insights into the efficient production of high-value chemicals from BPE, offering a comprehensive optimization approach for the CoMoO4/H-ZSM-5 catalytic system. Novelty/Originality of this article: This study represents a novel contribution to lignin valorization.
Copyrights © 2025