Environmental and Materials
Vol. 3 No. 2: (December) 2025

Optimizing vanillin and phenol production from benzyl phenyl ether using CoMoO4/H-ZSM-5: A Box-Behnken design approach

Khatrin, Irena (Unknown)
Amanullah, Duha Rushida (Unknown)
Wibowo, Rahmat (Unknown)
Howe, Russell Francis (Unknown)
Krisnandi, Yuni Krisyuningsih (Unknown)



Article Info

Publish Date
31 Dec 2025

Abstract

Background: Lignin valorization into high-value chemicals is crucial for sustainable development. This study focused on optimizing the catalytic conversion of benzyl phenyl ether (BPE), a lignin model compound, to vanillin and phenolic compounds. Methods: Hierarchical H-ZSM-5 was synthesized via a dual-template method and subsequently modified by wet impregnation with bimetallic cobalt and molybdenum oxides (CoMoO4/H-ZSM-5). Catalyst properties were thoroughly characterized using various techniques, including XRD, FTIR, XRF, N2-physisorption, and SEM-EDS mapping. Reaction conditions, specifically Co:Mo ratio, temperature, and reaction time, were optimized using the Box-Behnken design (BBD), and product yields were quantified by High-Performance Liquid Chromatography (HPLC). Findings: Characterization confirmed successful catalyst synthesis, organic template removal, and bimetal oxide incorporation without significant structural damage. Catalytic tests demonstrated 100% BPE conversion. The highest experimental vanillin yield achieved was 54.69%. BBD analysis revealed that the interaction between Co:Mo ratio and temperature, as well as the quadratic effect of Co:Mo ratio, were the most influential factors impacting product yields. The optimal parameters for maximizing vanillin and phenolic yield were determined to be a Co:Mo ratio of 3:7, a temperature of 169 °C, and a reaction time of 31 minutes. While the phenolic model showed a reasonable fit (R² = 0.76), the vanillin model exhibited a lower fit (R² = 0.34) with significant lack-of-fit. Conclusion: This research provides crucial insights into the efficient production of high-value chemicals from BPE, offering a comprehensive optimization approach for the CoMoO4/H-ZSM-5 catalytic system. Novelty/Originality of this article: This study represents a novel contribution to lignin valorization.

Copyrights © 2025






Journal Info

Abbrev

EAM

Publisher

Subject

Chemical Engineering, Chemistry & Bioengineering Control & Systems Engineering Energy Engineering Physics

Description

The Environmental and Materials Journal (EAM) is a biannual journal published by the Institute for Advanced Social, Science, and Sustainable Future, Indonesia. This journal is dedicated to issue the most substantial and advanced of original and review articles related with the environmental issues ...