Claim Missing Document
Check
Articles

Found 3 Documents
Search

Natural Aluminosilicate-based Y Zeolite for Catalytic Cracking of n-Hexadecane Khatrin, Irena; Saragi, Indah Revita; Ekananda, Rizki; Hanna, John Vincent; Griffith, Benyamin E; Krisnandi, Yuni Krisyuningsih
Makara Journal of Science Vol. 24, No. 2
Publisher : UI Scholars Hub

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Natural zeolite and kaolin are abundant in Indonesia especially in Java and Belitung islands. These materials generally contain high aluminosilicate minerals that can be used as silica and alumina sources for the formation of NaY zeolite. This research aimed to identify the modification of NaY zeolite structure using Bayat natural zeolite as alumina source and Belitung kaolin as silica source and its catalytic activity for n-hexadecane cracking. Pretreatment of materials were performed in several steps: activation, purification, fragmentation for Bayat–Klaten natural zeolite, and silica extraction for Belitung kaolin. The synthesis of NaY was performed hydrothermally using seed-assisted method with crystallization times of 24 and 48 h. The surface area analysis showed a typical surface area of microporous zeolite (i.e., a pore diameter of 1.897 nm) and surface area of 309.4 cm2/g. Meanwhile, powder X-ray diffraction characterization showed that the as-synthesized materials have the structure of NaY zeolite. The optimum crystallization time was 24 h with Si/Al ratio of 4.10. Furthermore, both synthetic and natural sourced NaY zeolites were converted into HY zeolites and employed as cracking catalyst of n-hexadecane in a fixed-bed reactor at 500 °C for 75 s. The natural sourced HY resulted in 59.80% conversion and 59.80% yield of gasoline product (C9–C12). These values were lower than the results given by synthetic HY (80%).
Amine-modified Ni-DOBDC MOF for CO2 capture: CO2 adsorption capacity and reusability Fahriansyah, Irsan; Khatrin, Irena; Abdullah, Iman; Krisnandi, Yuni Krisyuningsih
Environmental and Materials Vol. 2 No. 2: (December) 2024
Publisher : Institute for Advanced Science, Social, and Sustainable Future

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.61511/eam.v2i2.2024.1431

Abstract

Background: Anthropogenic carbon dioxide (CO₂) emissions have risen significantly due to the extensive use of fossil fuels, necessitating the development of effective CO₂ capture and conversion techniques. Adsorption using Metal-Organic Frameworks (MOFs) has shown great potential due to their high CO₂ adsorption capacity, particularly Ni-based MOFs. Enhancing their adsorption efficiency remains a key research focus to improve sustainability in CO₂ capture applications. Methods: Ni-based MOF (Ni-DOBDC) was synthesized using the solvothermal method, employing DMF as the solvent and 2,5-dihydroxyterephthalic acid (DOBDC) as the organic ligand. To enhance CO₂ adsorption capacity, Ni-DOBDC was further modified with ethylenediamine (EDA) via post-synthetic modification. Structural characterization was performed using XRD, confirming similarity to the Ni-DOBDC reference (CCDC 288477), and FTIR, which showed enhanced absorbance peaks. SEM-EDX analysis revealed a flower-like morphology with an average particle size of 0.75 μm. CO₂ adsorption tests were conducted on Ni-DOBDC and EDA/Ni-DOBDC (10%) using the titration method under controlled conditions. Findings: The CO₂ adsorption capacity of Ni-DOBDC and EDA/Ni-DOBDC was tested at 70°C with a CO₂ concentration of 50% in N₂. EDA modification significantly improved CO₂ adsorption capacity, with EDA/Ni-DOBDC achieving 9.95 mmol g⁻¹ compared to pristine Ni-DOBDC’s 6.44 mmol g⁻¹. However, Ni-DOBDC exhibited better regeneration ability in a three-cycle reusability test, likely due to EDA leaching during regeneration. Conclusion:  EDA-modified Ni-DOBDC demonstrates enhanced CO₂ adsorption capacity, making it a promising material for CO₂ capture applications. However, its reduced regeneration stability suggests the need for further optimization to improve long-term performance. Future studies should explore strategies to minimize EDA leaching while maintaining high adsorption efficiency. Novelty/Originality of this article: This study provides new insights into improving Ni-based MOF performance for CO₂ capture through post-synthetic modification with EDA. The findings highlight a trade-off between increased adsorption capacity and material stability, emphasizing the need for further refinement in MOF functionalization strategies.
Strategic Synthesis of Hierarchical Co3O4/ZSM-5 Zeolite as A Catalyst in Partial Oxidation of Methane: Bottom-up vs Top-down Methods Khatrin, Irena; Putri, Danika Nurranalya; Ridwan, Muhammad; Krisnandi, Yuni Krisyuningsih
Bulletin of Chemical Reaction Engineering & Catalysis 2025: BCREC Volume 20 Issue 3 Year 2025 (October 2025)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.20441

Abstract

Methane, a potent greenhouse gas contributing approximately 19% to global warming and possessing a global warming potential 28 times greater than carbon dioxide, necessitates conversion into more beneficial chemicals. Partial oxidation of methane to methanol is a promising conversion method which is both time- and cost-efficient. This study synthesized ZSM-5 using two strategic syntheses: Bottom-Up and Top-Down, followed by cobalt oxide impregnation at varying percentages 2.5, 5, and 10% (w/w) to produce Co3O4/ZSM-5. To investigate its physicochemical properties, ZSM-5 catalysts were thoroughly characterized with XRD, FTIR, XRF, N2-physisorption, and SEM. These catalysts were then evaluated in methane partial oxidation reactions conducted in a batch reactor, with a CH4:N2 feed ratio of 0.75 bar:2 bar, at 150 °C for 60 minutes. Co3O4-supported Bottom-Up ZSM-5 with 5% Co-loading demonstrated the largest percentage yield of 62.08% compared to the other Co-loading amount and ZSM-5 synthesized via Top-Down method. Copyright © 2025 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).