Penelitian ini membahas pemodelan prediksi pembelian pada platform e-commerce dengan memanfaatkan algoritma Extreme Gradient Boosting (XGBoost) berbasis data perilaku sesi pengguna. Dataset yang digunakan terdiri dari 12.719 sesi pengguna dengan sejumlah atribut perilaku, meliputi waktu kunjungan (Timestamp), durasi interaksi halaman (TimeOnPage_seconds), sumber rujukan (ReferralSource), tipe perangkat (DeviceType), tipe halaman (PageType), negara asal pengguna, serta jumlah item dalam keranjang belanja. Tahap prapengolahan data dilakukan untuk meningkatkan kualitas dataset sebelum pemodelan. Atribut numerik diproses menggunakan imputasi median guna menangani nilai hilang secara stabil terhadap outlier, sedangkan fitur kategorikal ditransformasikan menggunakan ordinal encoding agar sesuai dengan karakteristik algoritma berbasis pohon. Dataset selanjutnya dibagi menjadi data latih dan data uji dengan rasio 80:20 menggunakan teknik stratified split untuk menjaga proporsi kelas pada variabel target. Model XGBoost dilatih menggunakan parameter terkalibrasi dan dievaluasi menggunakan metrik akurasi, precision, recall, F1-score, dan ROC-AUC. Hasil evaluasi menunjukkan bahwa model mencapai akurasi sebesar 0,785 dan ROC-AUC sebesar 0,804, yang menandakan kemampuan diskriminasi yang baik dalam membedakan sesi yang berpotensi menghasilkan pembelian. Analisis feature importance berbasis gain mengungkapkan bahwa fitur Timestamp dan TimeOnPage_seconds merupakan faktor paling berpengaruh dalam pembentukan prediksi. Visualisasi pohon keputusan memberikan pemahaman tambahan mengenai mekanisme pemisahan fitur pada model. Temuan ini menunjukkan bahwa data perilaku sesi pengguna dapat dimanfaatkan secara efektif untuk mendukung prediksi konversi serta menjadi dasar pengembangan sistem rekomendasi dan strategi pemasaran e-commerce yang lebih adaptif.
Copyrights © 2026