Pertumbuhan e-commerce di Indonesia memicu peningkatan signifikan jumlah ulasan pengguna terhadap aplikasi Shopee di Google Play, sehingga analisis manual menjadi tidak lagi efisien. Penelitian ini bertujuan untuk meningkatkan performa analisis sentimen pada ulasan pengguna e-commerce berbahasa Indonesia dengan mengoptimalkan model IndoBERT menggunakan teknik Bayesian Optimization melalui framework Optuna. Latar belakang penelitian ini berfokus pada pentingnya pengolahan opini konsumen di platform Shopee, yang semakin tidak dapat ditangani secara manual karena volume data yang besar dan keberagaman gaya bahasa. Metode yang digunakan meliputi pengumpulan data melalui web scraping, praproses teks, pembagian data, pemodelan dengan IndoBERT, serta penalaan hiperparameter menggunakan Optuna. Hasil eksperimen menunjukkan bahwa optimasi Bayesian mampu meningkatkan akurasi klasifikasi dari 89,30% menjadi 96,10% dan macro-F1 dari 85,83% menjadi 94,82%. Selain itu, false-positive dan false-negative masing-masing turun sebesar 60% dan 67%, serta nilai ROC-AUC meningkat signifikan dari 0,9028 menjadi 0,9903. Temuan ini menegaskan efektivitas Optuna dalam meningkatkan performa dan efisiensi sistem klasifikasi sentimen berbasis IndoBERT, yang dapat diintegrasikan dalam pemantauan opini secara real-time di ranah e-commerce.
Copyrights © 2025