Malaria is an infectious disease that remains a significant health burden in Indonesia, particularly in Papua Province. This province has the highest malaria incidence rate nationally, influenced by various environmental factors such as rainfall. This study aims to estimate the number of malaria cases in districts/cities of Central Papua Province that do not have direct observation data, by utilizing the Co-Kriging method based on rainfall as a secondary variable and malaria cases as a primary variable from Papua Province. The secondary data used in this study were obtained from the official website of the Badan Pusat Statistik (BPS) of Papua Province, which includes the number of malaria cases in districts/cities as well as rainfall data from meteorological stations in the same region, collected in 2023. Three types of semivariogram models-spherical, exponential, and gaussian-were used to select the best model through statistical evaluation using Mean Squared Error (MSE) and Mean Absolute Percentage Error (MAPE). The results showed that the Gaussian semivariogram model provided the most optimal prediction results with an MSE of 10.895 and an MAPE of 4.67%. The estimates show that malaria cases in Central Papua are relatively uniform, with the highest incidence in Puncak Jaya district (219/1000 population) and the lowest in Mimika district (211/1,000 population). This approach is expected to be an important tool in spatially based disease planning and control and support the achievement of Sustainable Development Goals (SDGs), especially goals 3 (Good Health and Well-Being) and 13 (Climate Action).
Copyrights © 2026