Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control
Vol. 11, No. 1, February 2026 (Article in Progress)

Design of a Real-Time User Feedback for Mitigating Spurious SpO₂ Readings in Pulse Oximetry for Outpatient Monitoring

Mukhtar, Husneni (Unknown)
Rahmawati, Dien (Unknown)
Setiyadi, Suto (Unknown)
Istiqomah (Unknown)
Madani, Reza Ahmad (Unknown)



Article Info

Publish Date
24 Jan 2026

Abstract

Spurious SpO₂ readings—arising from motion artifacts, environmental interference, or device variability—remain a major limitation in wearable pulse oximetry, potentially triggering false alarms or missing hypoxemia during outpatient monitoring. Conventional devices often lack real-time mechanisms to detect and mitigate such errors, with previous reports indicating measurement biases of 11.2 - 24.5% across different models, underscoring the need for improved accuracy and user guidance. To address this gap, we present the design of an IoT-enabled wearable pulse oximeter with real-time user feedback, delivered through a mobile application. The system integrates a pulse oximetry and heart rate sensor (MAX30100) with a carbon monoxide gas sensor (MQ-7) and provides targeted notifications to guide corrective actions such as repositioning the probe, removing nail polish, or moving to fresh air. Validation involved controlled scenario testing (undetected SpO₂, CO >40 ppm, nail polish, loose contact) and user trials with 15 healthy volunteers from varied academic backgrounds. The prototype demonstrated high accuracy, with low relative errors—0.92% (HR), 0.93% (SpO₂), and 0.015% (CO)—and strong usability, achieving 93.3% compliance with corrective prompts, an average response time of 4.0±0.7 seconds, and a satisfaction score of 4.3/5. Compared with commercial oximeters, the proposed system improved reliability by reducing measurement errors by at least 87% through real-time corrective feedback. Future work will focus on energy-efficient power management and large-scale community-based trials to further validate performance across diverse patient populations.

Copyrights © 2026






Journal Info

Abbrev

kinetik

Publisher

Subject

Computer Science & IT Control & Systems Engineering Electrical & Electronics Engineering Energy Engineering

Description

Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control was published by Universitas Muhammadiyah Malang. journal is open access journal in the field of Informatics and Electrical Engineering. This journal is available for researchers who want to improve ...