Claim Missing Document
Check
Articles

Found 1 Documents
Search

Design of a Real-Time User Feedback for Mitigating Spurious SpO₂ Readings in Pulse Oximetry for Outpatient Monitoring Mukhtar, Husneni; Rahmawati, Dien; Setiyadi, Suto; Istiqomah; Madani, Reza Ahmad
Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control Vol. 11, No. 1, February 2026 (Article in Progress)
Publisher : Universitas Muhammadiyah Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22219/kinetik.v11i1.2371

Abstract

Spurious SpO₂ readings—arising from motion artifacts, environmental interference, or device variability—remain a major limitation in wearable pulse oximetry, potentially triggering false alarms or missing hypoxemia during outpatient monitoring. Conventional devices often lack real-time mechanisms to detect and mitigate such errors, with previous reports indicating measurement biases of 11.2 - 24.5% across different models, underscoring the need for improved accuracy and user guidance. To address this gap, we present the design of an IoT-enabled wearable pulse oximeter with real-time user feedback, delivered through a mobile application. The system integrates a pulse oximetry and heart rate sensor (MAX30100) with a carbon monoxide gas sensor (MQ-7) and provides targeted notifications to guide corrective actions such as repositioning the probe, removing nail polish, or moving to fresh air. Validation involved controlled scenario testing (undetected SpO₂, CO >40 ppm, nail polish, loose contact) and user trials with 15 healthy volunteers from varied academic backgrounds. The prototype demonstrated high accuracy, with low relative errors—0.92% (HR), 0.93% (SpO₂), and 0.015% (CO)—and strong usability, achieving 93.3% compliance with corrective prompts, an average response time of 4.0±0.7 seconds, and a satisfaction score of 4.3/5. Compared with commercial oximeters, the proposed system improved reliability by reducing measurement errors by at least 87% through real-time corrective feedback. Future work will focus on energy-efficient power management and large-scale community-based trials to further validate performance across diverse patient populations.