Harga properti merupakan nilai yang fluktuatif dan dipengaruhi oleh banyak faktor kompleks, sehingga sulit untuk diprediksi secara manual dengan akurasi tinggi. Penelitian ini bertujuan untuk membangun model prediksi harga rumah per satuan luas menggunakan algoritma Linear Regression. Dataset yang digunakan adalah data Real Estate Valuation yang terdiri dari 414 data transaksi dengan variabel prediktor meliputi tanggal transaksi, usia bangunan, jarak ke stasiun MRT terdekat, jumlah convenience store, serta koordinat geografis (latitude dan longitude). Penelitian dilakukan menggunakan perangkat lunak RapidMiner Studio. Hasil analisis korelasi menunjukkan bahwa jarak ke stasiun MRT memiliki hubungan negatif yang paling kuat terhadap harga rumah. Model regresi linear yang dihasilkan mampu memprediksi harga dengan tingkat Root Mean Squared Error (RMSE) sebesar [Nilai RMSE 8.290 +/- 0.000]. Penelitian ini menyimpulkan bahwa faktor lokasi (aksesibilitas) memiliki pengaruh lebih signifikan dibandingkan usia bangunan dalam penentuan harga properti pada dataset ini.
Copyrights © 2026