Pemasaran langsung (direct marketing) merupakan salah satu strategi utama industri perbankan untuk menawarkan produk deposito berjangka. Namun, kampanye yang tidak tertarget seringkali tidak efisien dan memakan biaya tinggi. Penelitian ini bertujuan untuk membangun model prediksi klasifikasi menggunakan algoritma K-Nearest Neighbor (KNN) untuk menentukan nasabah yang berpotensi berlangganan deposito berjangka berdasarkan data historis kampanye pemasaran bank. Dataset yang digunakan adalah Bank Marketing Dataset dari UCI Machine Learning Repository. Proses penelitian meliputi pra-pemrosesan data (cleaning, encoding, dan normalisasi Min-Max), pembagian data latih dan uji, serta pengujian nilai $k$ yang berbeda (k=3, 5, 7, 9). Hasil eksperimen menunjukkan bahwa algoritma KNN dengan nilai k=5 menghasilkan kinerja optimal dengan akurasi sebesar 89,2%, presisi 65%, dan recall 58%. Penelitian ini menyimpulkan bahwa KNN efektif digunakan untuk klasifikasi data pemasaran bank, namun memerlukan penanganan ketidakseimbangan kelas untuk meningkatkan nilai recall.
Copyrights © 2026