Vocatech : Vocational Education and Technology Journal
Vol 7, No 2 (2025): December

Sistem IoT dan Algoritma Naive Bayes untuk Monitoring Kualitas Air Laut secara Real-Time

Myladi, Mulyadi (Unknown)
Murtaza, Haikal (Unknown)
Huzaifah, Atthariq (Unknown)
Simbolon, Zulfan Khairil (Unknown)



Article Info

Publish Date
31 Dec 2025

Abstract

AbstractThis study develops a real-time seawater quality monitoring system by integrating Internet of Things (IoT) technology and the Naive Bayes classification algorithm. The system utilizes an ESP32 microcontroller equipped with pH and turbidity sensors to collect seawater quality data from coastal areas. The sensor data are transmitted continuously to a Firebase Realtime Database and visualized through an Android-based mobile application developed using Flutter. The Naive Bayes model was trained using a public Kaggle dataset consisting of 5,569 water quality records classified into polluted and unpolluted categories, and then applied to classify real-time sensor data collected at Pantai Pusong, Aceh. Data preprocessing included cleaning, normalization, outlier handling, and class balancing. Experimental results show that the proposed system is capable of performing stable real-time data acquisition, transmission, and visualization. The Naive Bayes classification achieved an accuracy of 53%, with better performance in identifying unpolluted seawater conditions than polluted ones. Although the classification accuracy is moderate, the results demonstrate that the integration of IoT devices, cloud services, and probabilistic machine learning can provide a functional end-to-end solution for real-time seawater quality monitoring and early environmental awareness in coastal regions.Keywords:Internet of things; naive bayes; real-time monitoring; seawater quality; turbidityAbstrakPenelitian ini mengembangkan sistem monitoring kualitas air laut secara real-time dengan mengintegrasikan teknologi Internet of Things (IoT) dan algoritma klasifikasi Naive Bayes. Sistem menggunakan mikrokontroler ESP32 yang dilengkapi sensor pH dan turbidity untuk mengakuisisi data kualitas air laut di wilayah pesisir. Data sensor dikirimkan secara kontinu ke Firebase Realtime Database dan ditampilkan melalui aplikasi Android berbasis Flutter. Model Naive Bayes dilatih menggunakan dataset publik dari Kaggle yang terdiri dari 5.569 data kualitas air dengan dua kelas, yaitu air tercemar dan tidak tercemar, kemudian diterapkan untuk mengklasifikasikan data sensor real-time yang diperoleh dari Pantai Pusong, Aceh. Tahapan praproses data meliputi pembersihan data, normalisasi, penanganan outlier, dan penyeimbangan kelas. Hasil pengujian menunjukkan bahwa sistem mampu melakukan akuisisi, pengiriman, dan visualisasi data secara real-time dengan kinerja yang stabil. Evaluasi menggunakan confusion matrix menghasilkan tingkat akurasi klasifikasi sebesar 53%, dengan kemampuan yang lebih baik dalam mengidentifikasi kondisi air tidak tercemar dibandingkan air tercemar. Meskipun akurasi model masih terbatas, sistem yang dikembangkan menunjukkan keberhasilan integrasi IoT, layanan cloud, dan pembelajaran mesin sebagai solusi awal pemantauan kualitas air laut secara real-time di wilayah pesisir.Kata Kunci:Internet of things; kualitas air laut; naive bayes; pemantauan real-time; turbidity

Copyrights © 2025






Journal Info

Abbrev

vocatech

Publisher

Subject

Civil Engineering, Building, Construction & Architecture Computer Science & IT Education Electrical & Electronics Engineering Mechanical Engineering

Description

1. Vocational Studies 2. Civil Engineering 3. Electrical Engineering 4. Mechanical Engineering 5. Classroom Instruction in Vocational Context 6. English for Vocational Purposes 7. Innovation in Vocational ...